Виды автономного отопления производственного помещения. Как обогреть производственное помещение воздушным отоплением Смета системы воздушного отопления производственного помещения

Воздушное отопление представляет собой способ обогрева помещений без участия теплоносителя. Реализация этого способа отопления возможна как с помощью прямых способов (тепловая пушка, тепловентилятор, печь Булерьяна), так и с помощью традиционных ( , электрокотлы и пр.).

Обогрев с помощью прямых источников тепла актуален для небольших производственных помещений, имеющих одно помещение, а обогрев традиционными источниками тепла - для помещений, имеющих несколько помещений. Для нагнетания воздуха применяется воздушный циркуляционный насос.

Для больших объектов такой способ, как воздушное отопление производственных помещений, является одним из самых экономичных и действенных способов обогрева.

Расчет воздушного отопления зависит от типа выбранной схемы отопления и учета некоторых нюансов, но в остальном мало отличается от способов расчета при организации других отопительных систем.

Схемы воздушных отопительных систем

В зависимости от того, где расположен источник тепла, возможные схемы воздушных делятся на два типа:

  • Центральная система
  • Местная система.

Местная схема отопления

Когда площадь действия системы отопления распространяется всего на одно помещение, в котором находится сам тепловой центр, схема называется местной схемой воздушного отопления производственных помещений. Расчет и выбор схемы производятся в зависимости от специфики производственного объекта, учета ряда эксплуатационных требований.

Центральная схема отопления

Другое название этой схемы - канальная. Смысл ее заключается в том, что воздух нагревается до нужной температуры в тепловом центре, а затем подается в помещения через воздуховоды. Тепловую установку можно разместить как внутри здания, так и снаружи.

Построенные по центральному типу, в свою очередь бывают рециркуляционными, прямоточными, частично-рециркуляционными.

Рециркуляционная система. Требует сравнительно небольших начальных расходов, эксплуатационные расходы тоже невелики.

Применяется в помещениях, где разрешается циркуляция воздуха.

Система с частичной рециркуляцией. Является более гибкой системой, реализуется за счет механических побуждений движения воздуха. Она способна работать в разных режимах: с частичной заменой воздуха или полной. Может работать в сочетании с вентиляционными установками.

Прямоточная система. Применение такой системы актуально для помещений, в которых выделяются взрывоопасные вещества, токсичные или пожароопасные - в тех случаях, когда попадание этих веществ в другие помещения недопустимо.

Достоинства и недостатки воздушных систем

Воздушное отопление производственных помещений является оптимальным способом обогрева больших пространств, благодаря тому, что:

  • Имеет большую скорость обогрева. Если речь идет о водяном отоплении производственных помещений, то один только выход воды к радиаторам и ее нагрев до приемлемой температуры занимает не менее 3-4 часов. В случае с воздушным отоплением нагрев помещений происходит очень быстро - в среднем уже через 20 минут от запуска системы воздушного отопления.
  • Низкая стоимость оборудования и материалов. по своей стоимости мало отличаются от аналогичных водяных устройств, а вот стоимость разводки обходится собственникам помещений в десятки раз дешевле. Объясняется это тем, что при организации системы отопления не требуется применения дорогостоящих радиаторов отопления, труб, кранов и фитингов. Для разводки достаточно алюминиевых рукавов и вентиляционных решеток, стоимость которых в десятки раз ниже.
  • Невосприимчивость к низким температурам. Системе отопления не страшно промерзание в случае вынужденного отключения, поэтому производственные помещения можно отключать без страха разморозки труб и батарей отопления.
  • Организация воздушного отопления зачастую производится вместе с системами вентиляции и кондиционирования помещений.
  • Простота запуска системы. Для запуска воздушного отопления нет необходимости в утомительной настройке приборов, так как балансировка происходит единожды при первом запуске. В дальнейшем вопрос стравливания воздушных масс решается автоматически.

Несмотря на обилие достоинств, система имеет некоторые недостатки.

Здесь следует сказать о шумности системы, возникновении сквозняков и необходимости использовать воздуховоды с большим диаметром, прятать которые под потолком зачастую экономически нецелесообразно.

Расчет воздушного отопления

Прежде чем приступить к монтажным работам, требуется решить ряд важных вопросов. В частности, воздушное отопление производственных помещений, расчет для которых требуется произвести, осуществляется в зависимости от:

  • объема теплопотерь в каждом отдельном помещении;
  • материала стен здания и их толщины;
  • количества окон и их площади;
  • типа и мощности нагревательного устройства;
  • количества людей, которые будут работать в отапливаемом помещении;
  • дополнительных источников тепла;
  • требуемого количества нагретого воздуха;
  • сечения воздуховодов;
  • возможных потерь давления в системе.

В результате анализа этих параметров выясняются возможные теплопотери в киловаттах и потребности в объеме тепловой энергии для воздушного отопления производственных помещений. Расчет при наличии этих данных прост: требуется компенсировать рассчитанные потери тепловой энергии дополнительной выработкой.

Как правило, на каждые 10 м2 требуется около 700 Вт тепловой энергии. Если же теплопотери превышают средние значения, то эта цифра может доходить и до 1 кВт на каждые 10 м2.

При этом для помещений расположенных в северных регионах, расчет ведется с увеличенным коэффициентом, равным 1,5-2,0.

Еще по этой теме на нашем сайте:


  1. Сегодня рассмотрим автономное отопление загородного дома, варианты и цены на приобретение оборудования и монтаж всей системы. Для начала, сразу оговоримся,...

  2. Если вы хотите сделать воздушное отопление загородного дома, то вы обратились по адресу. В этом материале мы рассмотрим самые оптимальные...

  3. Перед тем, как обустроить электрическое отопление загородного дома, варианты и цены на оборудование для которого мы считали в предыдущем материале,...

В холодное время года внутренняя часть производственных зданий любых размеров нуждается в поддержании нормальной температуры. Для обогрева промышленных помещений обычно используется несколько видов отопительной системы. Каждая из них имеет свои особенности, преимущества и недостатки. Какой вариант выбрать - будет зависеть от объекта, его площади и назначения.

Из-за сурового климата России в холодные сезоны производственные помещения необходимо отапливать, поддерживая в них . Для создания нормальных условий придется приложить немало усилий. Это связано с большим размером зданий, выполнением определенных работ и размещенным в них технологическим оборудованием. Все эти факторы усложняют задачу установки системы отопления.

Несмотря на такие сложности, обогрев промышленных помещений все-таки предусмотрен. Система отопления в таких зданиях выполняет несколько важных функций:

  • создает комфортные условия для работы персонала;
  • служит защитой оборудования от перепадов температуры, не допуская его переохлаждения;
  • комфортный микроклимат на складе продукции.

Отопление и охлаждение высоких помещений. Воздухораспределитель Hoval Air-Injector

Площади промышленных зданий отличаются размерами и бывают от десятков до нескольких тысяч квадратных метров. У таких зданий обычно очень высокие потолки, а рабочая зона, нуждающаяся в обогреве, небольших размеров. В отличие от жилых домов и квартир промышленное отопление имеет свои особенности.

Оборудование для отопления промышленных помещений должно быть максимально эффективным. Зона его расположения в здании не имеет значения относительно эстетики. Есть сооружения, в которых нужно отапливать определенную зону, но существуют и такие, где необходимо обогревать всю площадь. Большое значение имеет учет теплопотерь. Система обогрева выбирается в зависимости от вида и назначения помещения.

Выполняя расчет для автономного отопления производственных помещений и предприятий нужно учитывать, что в них должна поддерживаться постоянная температура без резких скачков. В некоторых местах есть необходимость создания отдельных зон с разным уровнем тепла. При подсчетах конкретного вида системы надо опираться на следующие критерии:

Все эти факторы помогут определить потребность в тепловой энергии для зданий промышленного и производственного назначения. Для расчета отопительных систем необходимо использовать специальную таблицу. Надо также учитывать специфику производства, доступность топлива, его стоимость, теплотехнические расчеты.

Сейчас предлагается несколько систем обогрева производственных сооружений. Наиболее эффективными являются:

  • паровые;
  • водяные;
  • воздушные;
  • электрические.

Отопление больших помещений

При выборе любого из этих вариантов нужно ориентироваться на габариты здания, простоту установки и доступность ремонта в случае необходимости. Важно также посчитать количество тепловой энергии, которое будет расходоваться на поддержку определенного температурного режима.

Все перечисленные выше виды обогрева имеют свои преимущества и недостатки. При выборе проекта надо учитывать технологические процессы. Работающие в цехах люди не смогут находиться в помещении, если температура в нем будет опускаться ниже 10 о С. На складах обычно размещается готовая продукция. Ее качество может пострадать от температурных перепадов, поэтому она нуждается в создании определенного микроклимата.

Отопление с помощью пара отличается тем, что его нельзя устанавливать в помещениях, где есть выделения горючих газов, аэрозолей или постоянного источника пыли. К примеру, при производстве тротуарной плитки такая система обогрева не подойдет. Для других предприятий обогрев паром имеет свои преимущества. Это, например, высокая температура, которая держится постоянно. Она способна прогреть помещение очень быстро, но также скоро здание и охлаждается. Для поддержания тепла не имеет значения количество этажей в здании. Такой вид можно назвать идеальным для периодического обогрева.

Кроме положительных сторон, паровое отопление имеет свои недостатки. Во время эксплуатации оборудование издает сильный шум. Второй минус - регулировать теплоотдачу и количество пара очень сложно. Стоимость отопительного сезона будет зависеть от частоты использования и вида топлива.

В отоплении горячей водой главная составляющая - котел. Он имеет свойство работать на многих видах энергоносителей:

  • электричество;
  • жидкое или твердое топливо;
  • комбинированный вид;

Самым экономным вариантом топлива считается газ и каменный уголь. Другие типы потребления будут стоить дороже, что является менее выгодным для отопления промышленных зданий.

У водяного обогрева есть свои особенности. Он выделяется под высоким давлением, при его использовании есть возможность поддерживать необходимый уровень температуры, чтобы сооружение не промерзало. Если в процессе эксплуатации температурная отметка падает до 0 о С, то установка может выйти из строя. При неиспользовании отопительного оборудования нужно добавлять антифриз.

Основное преимущество такой системы - быстрый обогрев. Тем не менее, кроме этого плюса, есть много недостатков. Например, при высоких потолках производственных зданий горячий воздух поднимется верх, а холодный останется внизу. При таком отоплении расходуется много электроэнергии, воздух становится сухим, поэтому необходимо его увлажнять до нормального состояния.

С помощью электрических приборов можно использовать самые разные системы. Сейчас все чаще применяют многие современные разработки. Например, инфракрасные излучатели отлично подходят под складские помещения.

Устанавливают также тепловые завесы, за счет которых холод не попадает внутрь зданий. Тем не менее, несмотря на все положительные качества, с помощью этих устройств прогреть всю площадь не получится, а при использовании дополнительного оборудования материальные затраты будут высокими.

Наиболее эффективными считаются потолочные системы. Эта инновационная технология лучистых установок позволяет прогревать стены, полы и потолки любых помещений. В процессе эксплуатации происходит быстрый нагрев локальной зоны, причем такой вид оборудования занимает минимум площади. ИК-отопление долго не нуждается в проведении реконструкционных работ, монтаж этой системы происходит быстро и просто (ее иногда устанавливают в виде настенных панелей). По мнению многих специалистов, лучистые нагреватели - наиболее приемлемый вариант для отопления производственных зданий и помещений.

Отопление производственных помещений имеет свои особенности, ведь площадь зданий велика, потолки высокие, а зона требуемого теплового комфорта зачастую ограничена. Водяное отопление, которое чаще всего обустраивают в жилых зданиях, не всегда подходит для обогрева просторных торговых, производственных площадей, складов, ангаров и т.п. Необходимо добиться, чтобы тепло было в нижней части помещений – на высоте до 2-3 м. Потоки теплого воздуха поднимаются вверх, и владельцы поневоле обогревают 70-80% «лишнего» объема. Как обеспечить экономичное отопление производственных помещений?

Площадь промышленных зданий составляет сотни квадратных метров, поэтому привычные системы обогрева оказываются неэффективными и слишком дорогими

Варианты обогрева просторных нежилых зданий

Для обогрева больших площадей обычно используют три основных вида систем:

  • водяные;
  • воздушные;
  • лучистые.

Под водяным отоплением подразумеваются системы с использованием радиаторов. Они выгодны в силу широкого выбора отопительных приборов. Но при этом многих владельцев помещений не устраивает нерациональное использование площади, высокие расходы и энергозатраты, большая тепловая инертность. Системы не подходят для многих торговых точек и складов, т.к. радиаторы занимают место у стен, где удобно располагать стеллажи. Большей популярностью пользуются воздушное и лучистое отопление, поэтому подробно мы рассмотрим именно их обустройство.

Система воздушного отопления торгового центра

Воздушное отопление промышленных помещений

Этот способ обогрева производственных площадей стал популярным еще в 70-е годы. Принцип работы основан на нагреве воздуха теплогенераторами, водяными или паровыми калориферами. Воздух по коллекторам поступает в те зоны, где необходимо поддерживать нужную температуру. Для распределения воздушных потоков устанавливают специальные распределительные головки или жалюзи. Это далеко не идеальный способ обогрева, он имеет существенные недостатки, однако применяется довольно широко.

Центральная и зональная системы

В зависимости от потребностей владельцев зданий можно оборудовать равномерный обогрев всего помещения или отдельных зон. Центральное воздушное отопление представляет собой приборы, которые забирают воздух снаружи, нагревают и подают его в помещения. Главным недостатком системы такого типа является отсутствие возможности регулировать температуру в отдельных помещениях здания.

Зональное отопление позволяет создать нужный температурный режим в каждой комнате. Для этого в каждом помещении устанавливают отдельный отопительный прибор (чаще всего газовый конвектор), который поддерживает заданную температуру. Зональная система экономически выгодна, поскольку используется ровно столько энергии, сколько нужно для обогрева, минимизируются нерациональные расходы. При установке нет необходимости прокладывать воздуховоды.

Определять подходящий тип системы и осуществлять расчет воздушного отопления производственного помещения должен опытный специалист. Учитываются такие факторы:

  • тепловые потери;
  • необходимый температурный режим;
  • количество прогреваемого воздуха;
  • мощность и вид воздухонагревателя.

Преимущества и недостатки

Важными преимуществами можно считать быстрый прогрев воздуха, возможность совмещения отопления с вентиляцией. Недостаток связан с общеизвестным законом физики: теплый воздух поднимается вверх. Под потолком создается более теплая зона, чем на уровне человеческого роста. Разница может составлять несколько градусов. Например, в цехах с потолками высотой 10 м внизу температура может составлять 16 градусов, а в верхней части помещения – до 26. Для поддержания нужного теплового режима система должна работать постоянно. Такой нецелесообразный расход энергии заставляет владельцев искать иные методы обогрева зданий.

Схема воздушного отопления промышленного помещения

Лучистое отопление – экономичные системы для больших промзданий

Для обогрева производственных помещений устанавливают «светлые» и «темные» инфракрасные обогреватели. В качестве источника тепла используют природный или сжиженный газ. В зданиях, где по каким-либо причинам нельзя устанавливать газотехническое оборудование, монтируют подвесные излучающие панели.

Особенности работы разных видов инфракрасных обогревателей

В «светлых» обогревателях газ сжигают с помощью специальной горелки, температура поверхности которой может достигать 900 градусов. Раскаленная горелка обеспечивает необходимое излучение. «Темные» обогреватели (их еще называют «трубными» по виду конструкции) представляют собой излучатели с отражателями, которые предназначены для направления лучистой энергии в нужные зоны помещений. Трубные инфракрасные приборы меньше нагреваются (до 500 градусов) и отличаются менее жестким излучением, что значительно расширяет их сферу применения.

Подвесные излучающие панели универсальны, их широко используют в категорийных, производственных и складских помещениях всех типов. Системы работают с помощью промежуточного теплоносителя «пар/вода». Вода в приборах нагревается до 60-120 градусов, а пар – до 100-200. На сегодня это наиболее удобный и экономичный способ отопления производственных помещений и предприятий.

Плюсы и минусы лучистого отопления

Инфракрасные обогреватели отличаются такими бесспорными достоинствами:

  • быстрый прогрев помещений (15-20 минут);
  • возможность создания теплых зон в неотапливаемых помещениях;
  • отсутствие потерь энергии на обогрев «лишней» площади»;
  • минимальные теплопотери в системах, работающих без теплоносителя;
  • экономия на обслуживании, поскольку не нужно менять фильтры, проверять, чинить насосы и т.п.;
  • комфортный микроклимат: воздух не пересушивается, пол нагревается и служит вторичным источником тепла.

Нельзя устанавливать инфракрасные обогреватели:

  • если высота потолков ниже 4 м;
  • на производствах, где излучение влияет на качество продукции или технологические процессы;
  • в помещениях пожарных категорий А, Б.

Как работает инфракрасный обогреватель

Выводы

Инфракрасные системы отопления производственных помещений более экономичны и удобны в эксплуатации, чем воздушные. Лучистые нагревательные приборы не способствуют распространению пыли, создают тепловые зоны на высоте человеческого роста, не сушат воздух. Излучение нагревает пол, благодаря чему люди в помещениях чувствуют себя более комфортно. В то же время существуют здания, где лучистое отопление неприменимо, и для них оптимальным будет воздушное.

  • Раздел 2. Человеческий фактор в обеспечении безопасности жизнедеятельности Глава 1. Классификация и характеристики основных форм деятельности человека
  • 1.1.Физический труд. Физическая тяжесть труда. Оптимальные условия труда
  • 1.2. Умственный труд
  • Глава 2. Физиологические характеристики человека
  • 2.1. Общие характеристики анализаторов
  • 2.2. Характеристика зрительного анализатора
  • 2.3. Характеристика слухового анализатора
  • 2.4. Характеристика кожного анализатора
  • 2.5. Кинестетический и вкусовой анализатор
  • 2.6. Психофизическая деятельность человека
  • Раздел 3. Формирование опасностей в производственной среде Глава 1. Производственный микроклимат и его влияние на организм человека
  • 1.1. Микроклимат производственных помещений
  • 1.2. Влияние параметров микроклимата на самочувствие человека
  • 1.3. Гигиеническое нормирование параметров микроклимата производственных помещений
  • Глава 2. Влияние химических веществ на организм человека
  • 2.1. Виды химических веществ
  • 2.2. Показатели токсичности химических веществ
  • 2.3. Классы опасности химических веществ
  • Глава 3. Акустические колебания и вибрации
  • 3.1. Влияние звуковых волн и их характеристики
  • 3.2. Виды звуковых волн и их гигиеническое нормирование
  • 3.4. Гигиеническое нормирование вибрации
  • Глава 4. Электромагнитные поля
  • 4.1. Влияние постоянных магнитных полей на организм человека
  • 4.2. Электромагнитное поле диапазона радиочастот
  • 4.3. Нормирование воздействия электромагнитного излучения радиочастот
  • Глава 5. Инфракрасное и ультрафиолетовое излучения
  • 5.2. Биологическое действие инфракрасного излучения. Нормирование ики
  • 5.4. Биологическое действие уфи. Нормирование уфи
  • Глава 6. Видимая область электромагнитного излучения
  • 6.1. Составляющие формирования световой среды
  • 6.3. Гигиеническое нормирование искусственного и естественного освещения
  • Глава 7. Лазерное излучение
  • 7.1. Сущность лазерного излучения. Классификация лазеров по физико-техническим параметрам
  • 7.2. Биологическое действие лазерного излучения
  • 7.3. Нормирование лазерного излучения
  • Глава 8. Электроопасность в производственной среде
  • 8.1. Виды поражения электрическим током
  • 8.2. Характер и последствия поражения человека электрическим током
  • 8.3. Категории производственных помещений по опасности поражения электрическим током
  • 8.4. Опасность трехфазных электрических цепей с изолированной нейтралью
  • 8.5 Опасность трехфазных электрических сетей с заземленной нейтралью
  • 8.6. Опасность сетей однофазного тока
  • 8.7. Растекание тока в грунте
  • Раздел 4. Технические методы и средства защиты человека на производстве Глава 1. Производственная вентиляция
  • 1.1. Профилактика неблагоприятного воздействия микроклимата
  • 1.2. Виды вентиляции. Санитарно-гигиенические требования предъявляемые к системам вентиляции
  • 1.3. Определение необходимого воздухообмена
  • 1.4. Расчет естественной общеобменной вентиляции
  • 1.5. Расчет искусственной общеобменной вентиляции
  • 1.6. Расчет местной вентиляции
  • Глава 2. Кондиционирование и отопление
  • 2.1. Кондиционирование воздуха
  • 2.2. Контроль производительности систем вентиляции
  • 2.3. Отопление производственных помещений. (Местное, центральное; удельные характеристики отопления)
  • Глава 3. Производственное освещение
  • 3.1. Классификация и санитарно-гигиенические требования к производственному освещению
  • 3.2. Нормирование и расчет естественного освещения
  • 3.3. Искусственное освещение, нормирование и расчет
  • Глава 4. Средства и методы защиты от шума и вибрации
  • 4.1. Методы и средства снижения негативного влияния шума
  • 4.2. Определение эффективности некоторых альтернативных методов снижения уровня шума
  • 4.3. Методы и средства снижения вредного влияния вибрации
  • Глава 5. Средства и методы защиты от электромагнитного излучения
  • 5.1. Средства и методы защиты от воздействия электромагнитных полей радиочастот
  • 5.2. Средства защиты от воздействия от инфракрасного и ультрафиолетового излучений
  • 5.3. Защита при работе с лазерами
  • Глава 6. Мероприятия по защите от поражения электрическим током
  • 6.1. Организационные и технические защитные мероприятия
  • 6.2. Защитное заземление
  • 6.3. Зануление
  • 6.4. Защитное отключение
  • 6.5. Применение индивидуальных электрозащитных средств
  • Раздел 5. Санитарно-гигиенические требования к промышленным предприятиям. Организация охраны труда Глава 1. Классификация и правила пользования средствами защиты
  • 1.1. Классификация и перечень средств защиты работающих
  • 1.2. Устройство и правила пользования сиз органов дыхания, защиты головы, глаз, лица, органов слуха, рук, специальной защитной одеждой и обувью
  • Глава 2. Организация охраны труда
  • 2.1. Санитарно-гигиенические требования к генеральным планам промышленных предприятий
  • 2.2. Санитарно-гигиенические требования к производственным зданиям и помещениям
  • 2.3. Организация проведения аттестации рабочих мест по условиям труда
  • Раздел 6. Управление охраной труда на предприятии Глава 1. Схема управления охраной труда
  • 1.1. Цели управления охраной труда на предприятии
  • 1.2. Принципиальная схема управления охраной труда на предприятии
  • Глава 2. Основные задачи управления охраной труда
  • 2.1. Задачи, функции и объекты управления охраной труда
  • 2.2. Информация в управлении охраной труда
  • Раздел 7. Правовые вопросы охраны труда Глава 1. Основные законодательные акты об охране труда
  • 1.1. Конституция рф
  • 1.2. Трудовой кодекс рф
  • Глава 2. Подзаконные акты об охране труда
  • 2.1. Нормативные правовые акты по охране труда
  • 2.2. Система стандартов безопасности труда. (ссбт)
  • Библиографический список
  • 2.3. Отопление производственных помещений. (Местное, центральное; удельные характеристики отопления)

    Отопление предназначено для поддержания нормируемой температуры воздуха в производственных помещениях в холодное время года. Кроме того, оно способствует лучшей сохранности зданий и оборудования, так как одновременно позволяет регулировать и влажность воздуха. С этой целью сооружают различные системы отопления.

    В холодный и переходный периоды года следует отапливать все здания и сооружения, в которых время пребывания людей превышает 2 ч, а также помещения, в которых поддержание температуры необходимо по технологическим условиям.

    К системам отопления предъявляют следующие санитарно-гигиенические требования: равномерный прогрев воздуха помещений; возможность регулирования количества выделяемой теплоты и совмещения процессов отопления и вентиляции; отсутствие загрязнения воздуха помещений вредными выделениями и неприятными запахами; пожаро- и взрывобезопасность; удобство в эксплуатации и ремонте.

    Отопление производственных помещений по радиусу действия бывает местное и центральное.

    Местное отопление устраивают в одном или нескольких смежных помещениях площадью менее 500 м 2 . В системах такого отопления генератор теплоты, нагревательные приборы и теплоотдающие поверхности конструктивно объединены в одном устройстве. Воздух в этих системах чаще всего нагревается за счет использования теплоты сгорающего в печах топлива (дров, угля, торфа и т.д.). Значительно реже в качестве своеобразных отопительных приборов применяются полы или стеновые панели со встроенными электронагревательными элементами, а иногда – электрорадиаторы. Существуют также воздушные (основной элемент – калорифер) и газовые (при сжигании газа в отопительных приборах) системы местного отопления.

    Центральное отопление по виду используемого теплоносителя может быть водяное, паровое, воздушное и комбинированное. Системы центрального отопления включают в себя генератор теплоты, нагревательные приборы, средства передачи теплоносителя (трубопроводы) и средства обеспечения работоспособности (запорная арматура, предохранительные клапаны, манометры и пр.). Как правило, в таких системах теплота вырабатывается за пределами отапливаемых помещений.

    Системы отопления должны компенсировать теплопотери через строительные ограждения, расход теплоты на нагрев нагнетаемого холодного воздуха, поступающих извне сырья, машин, оборудования и на технологические нужды.

    При отсутствии точных данных о строительном материале, ограждениях, толщине слоев материалов ограждающих конструкций и вследствие этого невозможности определения термического сопротивления стен, потолков, полов, окон и прочих элементов расход теплоты приближенно определяют с помощью удельных характеристик.

    Расход теплоты через наружные ограждения зданий, кВт

    где - удельная отопительная характеристика здания, представляющая собой поток теплоты, теряемой 1 м 3 объема здания по наружному обмеру в единицу времени при разности температур внутреннего и наружного воздуха в 1 К, Вт/(м 3 ∙К): в зависимости от объема и назначения здания =0,105…0,7 Вт/(м 3 ∙К); V Н - объем здания без подвальной части по наружному обмеру, м 3 ; T В - средняя расчетная температура внутреннего воздуха основных помещений здания, К; T Н – расчетная зимняя температура наружного воздуха для проектирования систем отопления, К: для Волгограда 248 К, Кирова 242 К, Москвы 247 К, Санкт-Петербурга 249 К, Ульяновска 244 К, Челябинска 241К.

    Расход теплоты на вентиляцию производственных зданий, кВт

    где - удельная вентиляционная характеристика, т.е. расход теплоты на вентиляцию 1 м 3 здания при разности внутренней и наружной температур в 1 К, Вт/(м 3 ∙К): в зависимости от объема и назначения здания =0,17…1,396 Вт/(м 3 ∙К);
    - расчетное значение температуры наружного воздуха для проектирования систем вентиляции, К: для Волгограда 259 К, Вятки 254 К, Москвы 258 К, Санкт-Петербурга 261 К, Ульяновска 255 К, Челябинска 252 К.

    Количество теплоты, поглощаемое ввозимыми в помещения материалами, машинами и оборудованием, кВт

    ,

    где -массовая теплоемкость материалов или оборудования, кДж/(кг∙К): для воды 4,19, зерна 2,1…2,5, железа 0,48, кирпича 0,92, соломы 2,3;
    -масса ввозимых в помещение сырья или оборудования, кг;
    -температура ввозимых в помещение материалов, сырья или оборудования, К: для металлов
    =, для несыпучих материалов
    =+10, сыпучих материалов
    =+20;-время нагрева материалов, машин или оборудования до температуры помещения, ч.

    Количество теплоты, потребляемой на технологические нужды, кВт, определяют через расход горячей воды или пара

    ,

    где -расход на технологические нужды воды или пара, кг/ч: для ремонтных мастерских 100…120, на одну корову 0,625, на теленка 0,083 и т.д.;-теплосодержание воды или пара на выходе из котла, кДж/кг;-коэффициент возврата конденсата или горячей воды, изменяющийся в пределах 0…0,7: в расчетах обычно принимают=0,7;-теплосодержание возвращаемых в котел конденсата или воды, кДж/кг: в расчетах можно принять равным 270…295 кДж/кг.

    Тепловая мощность котельной установки P к с учетом расхода теплоты на собственные нужды котельной и потерь в теплосетях принимается на 10…15% больше суммарного расхода теплоты

    По полученному значению P к подбираем тип и марку котла. Рекомендуется устанавливать однотипные котельные агрегаты с одинаковой тепловой мощностью. Число стальных агрегатов должно быть не менее двух и не более четырех, чугунных – не более шести. Следует учитывать, что при выходе из строя одного котла оставшиеся должны обеспечить не менее 75-80% расчетной тепловой мощности котельной установки.

    Для непосредственного обогрева помещений применяют нагревательные приборы различных видов и конструкций: радиаторы, чугунные ребристые трубы, конвекторы и пр.

    Общую площадь поверхности нагревательных приборов, м 2 , определяют по формуле

    ,

    где - коэффициент теплоотдачи стенок нагревательных приборов, Вт/(м 2 ∙К): для чугуна 7,4, для стали 8,3; -температура воды или пара на входе в нагревательный прибор, К; для водных радиаторов низкого давления 338…348, высокого давления 393…398; для паровых радиаторов 383…388;-температура воды на выходе из нагревательного прибора, К: для водяных радиаторов низкого давления 338…348, для паровых и водяных радиаторов высокого давления 368.

    По известному значению F находят требуемое число секций нагревательных приборов

    ,

    где -площадь одной секции нагревательного прибора, м 2 , зависящая от его типа: 0,254 у радиаторов М-140; 0,299 у М-140-АО; 0,64 у М3-500-1; 0,73 у конвектора плинтусного типа 15КП-1; 1 у чугунной ребристой трубы диаметром 500 мм.

    Бесперебойная работа котлов возможна только при достаточном запасе топлива для них. Кроме того, зная требуемое количество альтернативных топливных материалов, можно с помощью экономических показателей определить оптимальный вид топлива.

    Потребность в топливе, кг, на отопительный период года ориентировочно можно рассчитать по формуле

    ,

    где =1,1…1,2- коэффициент запаса на неучтенные потери теплоты;-годовой расход условного топлива на повышение температуры 1 м 3 воздуха отапливаемого здания на 1 К, кг/(м 3 ∙К): 0,32 для здания с
    м 3 ; 0,245 при
    ; 0,215 прии 0,2 при>10000 м 3 .

    Условным принято считать топливо, теплота сгорания 1 кг которого равна 29,3 МДж, или 7000 ккал. Для перевода условного топлива в натуральное применяют поправочные коэффициенты: для антрацита 0,97, бурого угля 2,33, дров среднего качества 5,32, мазута 0,7, торфа 2,6.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: