Что такое квантовое шифрование? Это не серебряная пуля, но может улучшить безопасность. Квантовая криптография простыми словами (гостевой пост Романа Душкина)

Квантовые компьютеры и связанные с ними технологии в последнее время становятся все актуальнее. Исследования в этой области не прекращаются вот уже десятилетия, и ряд революционных достижений налицо. Квантовая криптография - одно из них.
Владимир Красавин «Квантовая криптография»

Данная статья является прологом к циклу статей и переводов по теме Квантовая криптография.

Действительно в последнее время все чаще мы слышим такие понятия как «Квантовый компьютер», «Квантовые вычисления» и конечно же «Квантовая криптография».

И если с первыми двумя понятиями в принципе всё понятно, то «Квантовая криптография» - понятие, которое хоть и имеет точную формулировку, до сих пор остается для большинства людей темным и не совсем понятным этакий Ёжик в тумане.

Но прежде чем непосредственно перейти к разбору данной темы введем базовые понятия:

Криптография – наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.

Квантовая криптография – метод защиты коммуникаций, основанный на принципах квантовой физики. В отличие от традиционной криптографии, которая использует математические методы, чтобы обеспечить секретность информации, квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики.

Ортогональность – понятие, являющееся обобщением перпендикулярности для линейных пространств с введённым скалярным произведением.

Quantum Bit Error Rate (QBER) – уровень квантовых ошибок.


Квантовая криптография – направление молодое, но медленно развивающиеся в силу своей необычности и сложности. С формальной точки зрения это не есть криптография в полном понимании этого слова, так как базируется она не столько на математических моделях, сколько на физики квантовых частиц.

Главной её особенностью, а заодно и особенностью любой квантовой системы является невозможность вскрытия состояние системы на протяжении времени, так при первом же измерении система меняет свое состояние на одно из возможных неортогональных значений. Помимо всего прочего существует «Теорема о запрете клонирования» сформулированная в 1982 году Вуттерсом, Зуреком и Диэксом, которая говорит о невозможности создания идеальной копии произвольного неизвестного квантового состояния, хотя и существует лазейка, а именно - создание неточной копии. Для этого нужно привести исходную систему во взаимодействие с большей вспомогательной системой и провести унитарное преобразование общей системы, в результате которого несколько компонентов большей системы станут приблизительными копиями исходной.

Основы передачи данных

Дабы не приводить сложных и не всем понятных схем, прибегну к помеси физики и геометрии.

В качестве носителей информации, чаще всего, используются одиночные или парные связанные фотоны. Значения 0/1 кодируются различными направлениями поляризации фотонов. При передаче используются случайно выбранный 1 из двух или трех неортогональных базисов. Соответственно правильно обработать входной сигнал возможно только если получатель смог подобрать правильный базис, в противном случае исход измерения считается неопределенным.

Если же хакер попытается получить доступ к квантовому каналу, по которому происходит передача, то он, как и получатель будет ошибаться в выборе базиса. Что приведет к искажению данных, которое будет обнаружено обменивающимися сторонами при проверке, по некому выработанному тексту, о котором они договорились заранее, например, при личной встрече или по зашифрованному, методами классической криптографии, каналу.

Ожидание и Реальность

При использовании идеальной системы перехват данных невозможен, так как моментально обнаруживается участниками обмена. Однако при обращении к реальным системам все становится намного прозаичней.

Появляются две особенности:

  • Существует возможность неправильно переданных битов, в силу того, что процесс носит вероятностный характер.
  • Так как главная особенность системы – это использование импульсов с низкой энергией, это сильно снижает скорость передачи данных.
Теперь немного подробней о данных особенностях.

Неправильные, или точнее говоря искаженные биты могут возникать по двум основным причинам. Первая причина это я, несовершенность оборудования используемого при передаче данных, вторая причина - это вмешательство криптоаналитика или хакера.
Решение первой причины очевидно Quantum Bit Error Rate.

Quantum Bit Error Rate представляет собой уровень квантовых ошибок, который вычисляется по довольно замысловатой формуле:

QBER= «p_f+(p_d*n*q*∑(f_r* t_l) /2)*μ»

Где:

p_f: вероятность неправильного «щелчка» (1-2%)
p_d: вероятность неправильного сигнала фотона:
n: количество обнаружений
q: фаза= 1/2; поляризация = 1
Σ: detector efficiency
f_r: частота повторения
p_l: скорость передачи данных (чем больше расстояние, тем меньше)
µ: затухание для световых импульсов.


Говоря о второй особенности стоит упомянуть, что во всех системах присутствует затухание сигнала. И, если в используемых ныне способах передачи данных эта проблема решается за счет различных способов усиления. То в случае с квантовым каналом на данный момент максимальна достигнутая скорость 75 Кбит/с, но уровень потерянных фотонов почти достиг 50%. Хотя справедливость ради скажу, что по известным данным минимальные потери при передаче составляют 0,5% на скорости всего лишь 5 кбит/с.

Таким образом можно сделать следующие выводы:

  1. Хоть в идеале защищенный методами Квантовой криптографии канал взломать практически невозможно, по крайней мере известными на данный момент способами, на практике следуя правилу, что стойкость системы определяется стойкостью самого слабого её звена, мы убеждаемся в обратном;
  2. Квантовая криптография развивается, причем довольно-таки быстро, но к сожалению практика не всегда поспевает за теорией. И как следствие вытекает третий вывод;
  3. Созданные на данный момент системы использующие такие протоколы как BB84, B92 подвержены атакам, и по своей сути не обеспечивают достаточной стойкости.
Конечно Вы скажете:

Но как же так есть ведь протоколы E91 и Lo05. И он принципиально отличается от BB84, B92.
- Да, и все же есть одно, НО…

Но об этом в следующей статье.

Будоражит умы ученых и заинтересованных людей из области криптографии. И не зря. Ведь появление компьютера, способного решать сколь угодно сложные задачи, ставит под сомнение существование криптографии в том виде, в котором она есть сейчас. Криптографические протоколы с открытым ключом перестанут иметь смысл, т.к. односторонние функции строго говоря перестанут быть односторонними. Солнце зайдет, мир перевернется, реки потекут вспять… Но мы ведь не спешим отчаиваться, правда?

Существует множество квантовых криптографических алгоритмов - защищенные квантовые каналы, квантовое шифрование с открытым ключом, квантовое подбрасывание монеты, квантовые вычисления вслепую, квантовые деньги - но большинство из них требует для своего осуществления полноценного квантового компьютера.

Да, передача больших объемов информации по квантовым каналам является нецелесообразной на сегодняшний день. А вот использование квантовых алгоритмов для формирования и передачи ключевой информации в симметричных криптосистемах - не только технически реально, но и абсолютно оправданно.

Что ж, как это работает? Например, так:

  • Сторона А посылает последовательность фотонов, имеющих случайную (0°, 45°, 90°, 135°) поляризацию;
  • Сторона Б измеряет поляризацию фотонов, выбирая базис "+" (0°, 90° – линейная поляризация) или "×" (45°, 135° – диагональная поляризация) по случайному закону;
  • Сторона Б фиксирует полученные результаты измерений, сохраняя их в секрете (отдельные фотоны могут быть не приняты вовсе – потеряны или «стерты»);
  • Сторона Б сообщает затем стороне А по открытому каналу, какие базисы ("+" или "×") она использовала для каждого принятого фотона (но не полученные им результаты), а сторона А сообщает ему, какие базисы из использованных были правильными (данные, полученные при измерениях в неправильных базисах, отбрасываются);
  • Оставшиеся данные интерпретируются в соответствии с условленной схемой (0° и 45° декодируются как «0», а 90° и 135° – как «1») как двоичная последовательность.
Все, мы получили «сырой» ключ, далее следует усиление секретности, исправление ошибок и согласование ключевой последовательности с помощью специальных алгоритмов (но это уже тема для следующей статьи и не одной).

Просто и эффективно. Дело за технической стороной вопроса. Нет, квантовый компьютер строить для этого не надо, а вот хорошие однофотонные передатчики и приемники (и не только) просто необходимы для передачи квантовой информации на большие расстояния.

Есть ли будущее у квантовой криптографии? Хотя классическая криптография и не сдает свои позиций, ее будущее целиком зависит от развития алгоритмов квантового распределения ключа.

Квантовая криптография - это один из тех удивительных инструментов, который был обнаружен еще задолго до того, как в нем появилась практическая необходимость. Некоторые компании уже сейчас предлагают криптографические решения, обладающие свойством “доказуемой безопасности” и основанные на фундаментальных принципах квантовой механики. Но, несмотря на все уверения подобных компаний, можно найти публикации, в которых описываются практически осуществимые способы того, как пассивный нарушитель Ева может подслушать, о чем щебечут Алиса и Боб по квантовому каналу.

Терзаемый любопытством, я запрыгнул на парижский скоростной поезд, чтобы совершить путешествие в саму колыбель квантовой криптографии: в Женеву. Именно в Женеве в реальных условиях была продемонстрирована работа алгоритма квантового распределения ключа (quantum key distribution - QKD). Именно в Женеве находится компания Id Quantique, которая специализируется на изготовлении продуктов безопасности, работающих по принципам квантовой физики. Именно Женева – резиденция исследовательского центра квантовой оптики GAP-Optique (при Женевском университете).

Моя цель понять, так что же такое квантовая криптография? Кто покупает QKD-системы? Зачем? Как повсеместное внедрение QKD отразится на противостоянии белых и черных хакеров. Каковы направления будущих исследований QKD?

Квантовый нарушитель

Пока поезд на всех парах мчался к пункту моего назначения, я размышлял (надо сказать, с долей неохоты) о современной криптографии. Существует множество способов защищать информацию, но меня интересовали только коммерческие асимметричные системы. Все криптографические системы можно разделить на два класса: симметричные и асимметричные. В асимметричных системах у меня есть два ключа: один из которых закрытый и я храню его дома под подушкой; второй ключ – открытый. Теперь, чтобы отправить мне зашифрованное сообщение, вам нужно зашифровать его отрытым ключом, я же смогу расшифровать сообщение, воспользовавшись своим закрытым ключом.

Простые числа (Внимание: дальше много математики)

В стойкой асимметричной системе нарушитель не сможет вычислить закрытый ключ, если ему известен только открытый ключ. Алгоритм RSA (названный в честь тройки своих создателей) считается стойкой асимметричной системой. Давайте взглянем, как работает RSA.

Сначала выберем два простых числа p и q , например, p = 13 и q = 17 . Перемножив два числа, мы получим pq = 221 .

Нам также понадобится второе чиcло: произведение p -1 и q -1 , (p -1)(q -1)=192 . Теперь в диапазоне от 1 до 192 выберем любое число, которое было бы взаимно простым с 221. Давайте в качестве такого числа возьмем 7.

Для того чтобы вычислить ключи, последовательно будем находить значения выражения (p ‑1)(q -1)(1,2,3,…) + 1 до тех пор, пока мы не получим число, которое нацело делится на выбранное ранее число (в нашем случае на 7). При вычислении выражения у нас получится следующий ряд: 193, 385, 578… 385 делится на 7, и в результате дает 55.

Итак, мы получили два ключа: {7, 221} и {55, 221}. Но, не зная простых чисел, перемножением которых получено число 221, нам не удастся вычислить один ключ, зная только другой. Тем не менее, мы знаем произведение простых множителей, так что в качестве варианта можно попробовать факторизовать 221 и найти те самые простые множители.

Оказывается, разложение на множители не такая уж и простая задача. Я написал простенький скрипт, который позволяет узнать, как время нахождения простых множителей зависит от размера факторизируемого числа. Скрипт не оптимизирован и в нем используется метод перебора. Время загрузки Питона и необходимых библиотек ничтожно мало по сравнению со временем работы самого скрипта. Но тут важно скорее не само время работы, а то, насколько быстро время разложения на множители возрастает при увеличении размера факторизуемого числа.

В идеальной ситуации, когда размер факторизуемого числа увеличивается на порядок, время нахождения простых множителей должно увеличиваться как минимум на порядок. В частности для моего скрипта, чтобы увеличить время факторизации на один порядок, нужно увеличить на порядок каждый из простых множителей (или увеличить произведение на два порядка).

Но наше преимущество перед нарушителем заключается в том, что время генерации ключа практически не зависит от размера простых множителей. Следовательно, чтобы сделать факторизацию практически неосуществимой, мы можем просто выбрать простые числа достаточно большой длины. И именно поэтому битовая длина ключей в ассиметричных системах такая большая.

Шор in da house

Хорошо, мой скрипт действительно не отличается изысканностью. Другие бы попытались, и я не сомневаюсь, нашли бы способ оптимизировать скрипт. Но, так или иначе, никакая оптимизация не спасет от достаточно большой пары простых чисел. И вот тут на сцену выходят квантовые информационные технологии. Шор обнаружил, что на квантовом компьютере задачу разложения на множители можно решить за полиномиальное время. С тех пор алгоритм Шора стал источником развития как технологии QKD, так и классической криптографии.

Стивен Визнер (Stephen Wiesner), являясь студентом Колумбийского университета, в 1970 подал статью по теории кодирования в журнал IEEE Information Theory, но она не была опубликована, так как изложенные в ней предположения казались фантастическими, а не научными. Именно в была описана идея возможности использования квантовых состояний для защиты денежных банкнот. Визнер предложил в каждую банкноту вмонтировать 20 так называемых световых ловушек, и помещать в каждую из них по одному фотону, поляризованному в строго определенном состоянии. Каждая банкнота маркировалась специальным серийным номером, который заключал информацию о положении поляризационного фотонного фильтра. В результате этого при применении отличного от заданного фильтра комбинация поляризованных фотонов стиралась. Но на тот момент технологическое развитие не позволяло даже рассуждать о таких возможностях. Однако в 1983 году его работа «Сопряженное кодирование» была опубликована в SIGACT News и получила высокую оценку в научных кругах.

В последствии на основе принципов работы Визнера С. ученые Чарльз Беннет (Charles Bennett) из фирмы IBM и Жиль Брассард (Gilles Brassard) из Монреальского университета разработали способ кодирования и передачи сообщений. Ими был сделан доклад на тему «Квантовая криптография: Распределение ключа и подбрасывание монет» на конференции IEEE International Conference on Computers, Systems, and Signal Processing. Описанный в работе протокол впоследствии признан первым и базовым протоколом квантовой криптографии и был назван в честь его создателей BB84. Для кодирования информации протокол использует четыре квантовых состояния микросистемы, формируя два сопряж?нных базиса.

В это время Артур Экерт работал над протоколом квантовой криптографии, основанном на спутанных состояниях . Опубликование результатов его работ состоялось в 1991 году. В основу положены принципы парадокса Эйнштейна- Подольсого-Розенберга, в частности принцип нелокальности спутанных квантовых объектов.

На протяжении двадцати пяти лет, квантовая криптография прошла путь от теоретических исследований и доказательства основных теорий до коммерческих систем, использующих оптическое волокно для передачи на расстояние десятков километров.

В первой экспериментальной демонстрации установки квантового распределения ключей проведенной в 1989 в лабораторных условиях , передача осуществлялась через открытое пространство на расстояние тридцати сантиметров. Далее эти эксперименты были проведены с использованием оптического волокна в качестве среды распространения. После первых экспериментов Мюллера и др. в Женеве, с использованием оптоволокна длиной 1,1 км , в 1995 расстояние передачи было увеличено до 23 км через оптическое волокно, проложенное под водой . Приблизительно в то же время, Таунсендом из British Telecom была продемонстрирована передача на 30 км . Позднее он, продолжив тестирование систем с использованием различных конфигураций оптических сетей , увеличил дальность до 50 км . Эксперименты по передаче на это же расстояние были позднее повторены Хьюзом и др. в Лос-Аламосе . В 2001г., Хискетом и др. в Соединенном Королевстве была осуществлена передача на расстояние 80 км . В 2004-2005гг., две группы в Японии и одна в Соединенном Королевстве сообщили об осуществлении экспериментов по квантовому распределению ключей и интерференции одиночных фотонов на расстояние свыше 100 км . Первые эксперименты по передаче на расстояние 122 км проводились учеными из Toshiba в Кембридже с использованием детекторов на основе лавинных фотодиодов (ЛФД) . Рекорд по дальности передачи информации принадлежит объединению ученых Лос-Аламоса и Национального института стандартов и технологий, и составляет 184 км . В нем использовались однофотонные приемники охлаждаемые до температур близких к нулевым по Кельвину.

Первая презентация коммерческой системы квантовой криптографии произошла на выставке CeBIT-2002. Там, швейцарские инженеры компании GAP-Optique (www.gap-optique.unige.ch) из Женевского университета представили первую систему квантового распределения ключей (QKD - Quantum Key Distribution). Ученым удалось создать достаточно компактное и надежное устройство. Система располагалась в двух 19-дюймовых блоках и могла работать без настройки сразу после подключения к персональному компьютеру. С его помощью была установлена двухсторонняя наземная и воздушная волоконно-оптическая связь между городами Женева и Лузанна, расстояние между которыми составляет 67 км . Источником фотонов служил инфракрасный лазер с длиной волны 1550 нм. Скорость передачи данных была невысока, но для передачи ключа шифра (длина от 27,9 до 117,6 кбит) большая скорость и не требуется.

В последующие годы к проектированию и изготовлению систем квантовой криптографии подключились такие коммерческие монстры как Toshiba, NEC, IBM, Hewlett Packard, Mitsubishi, NTT. Но наряду с ними стали появляться на рынке и маленькие, но высокотехнологичные компании: MagiQ (www.magiqtech.com), Id Quantique (www.idquantique.com), Smart Quantum (www.smartquantum.com). В июле 2005 в гонке за увеличение расстояния передачи ключа вперед вышли инженеры Toshiba, представив на рынке систему, способную передать ключ на 122 км. Однако, как и у конкурентов, скорость генерации ключа в 1,9 кбит/с оставляла желать лучшего. Производители в настоящие время стремятся к разработке интегрированных систем - новинкой от Id Quantique, является система Vectis, использующая квантовое распределение ключей для создания VPN туннелей, шифрующая данные на канальном уровне с помощью шифра AES. Ключ может быть 128, 196 или 256-битной длины и меняется с частотой до 100 Гц. Максимальная дистанция для данной системы составляет 100 км. Все вышеперечисленные компании производят системы кодирующие информацию о битах ключа в фазовых состояниях фотонов. Со времен первых реализаций, схемы построения систем квантового распределения ключей значительно усложнились.

Британские физики из коммерческого подразделения QinetiQ Британской оборонной исследовательской лаборатории и немецкие физики из Мюнхенского университета Людвига-Максимиллиана впервые осуществили передачу ключа на расстояние 23,4 км непосредственно через воздушное пространство без использования оптического волокна . В эксперименте для кодирования криптографической информации использовались поляризации фотонов - одна для передачи двоичного символа «0» и противоположная для символа «1». Эксперимент проводился в горах Южной Германии. Слабый импульсный сигнал посылался ночью с одной горной вершины (2 950 м) на другую (2 244 м), где находился счетчик фотонов.

Руководитель проекта Джон Рэрити (John Rarity) из QinetiQ полагал , что уже в 2005 году будет проведен эксперимент с посылкой криптографического ключа на низкоорбитальный спутник, а к 2009 году с их помощью можно будет посылать секретные данные в любую точку планеты. Отмечалось, что для этого придется преодолеть ряд технических препятствий.

Во-первых, необходимо улучшить устойчивость системы к неизбежной потере фотонов при их посылке на расстояния в тысячикилометров.

Во-вторых, существующие спутники не оснащены соответствующим оборудованием для пересылки криптографических данных по квантовому протоколу, так что потребуется конструирование и запуск совершенно новых спутников .

Исследователи из Северо-западного университета (Эванстон, штат Иллинойс) продемонстрировали технологию, позволяющую передавать на небольшое расстояние шифрованное сообщение со скоростью 250 Мбит/с . Ученые предложили метод квантового кодирования самих данных, а не только одного ключа. В этой модели учитывается угол поляризации каждого переданного фотона, Поэтому любая попытка декодировать сообщение приводит к такой зашумленности канала, что всякая расшифровка становится невозможной. Исследователи обещают, что уже модель следующего поколения сможет работать практически на магистральной скорости Интернета порядка 2,5 Гбит/с. По словам одного из разработчиков, профессора Према Кумара (Prem Kumar), "еще никому не удавалось выполнять квантовое шифрование на таких скоростях". Ученые уже получили несколько патентов на свои разработки и сейчас работают вместе со своими промышленными партнерами Telcordia Technologies и BBN Technologies над дальнейшим усовершенствованием системы. Первоначально рассчитанный на пять лет проект был поддержан грантом DARPA (the Defense Advanced Research Projects Agency) в 4,7 миллиона долларов. Результатом данного проекта стала система квантового кодирования AlphaEta .

Группа Ричарда Хьюгса (Richard Hughes) из Лос-Аламоса занимается разработками спутниковых оптических линий связи (ОЛС). Для реализации преимуществ квантовой криптографии фотоны должны проходить через атмосферу без поглощения и изменения поляризации. Для предотвращения поглощения исследователи выбирают длину волны в 770 нм, соответствующую минимальному поглощению излучения молекулами атмосферы. Сигнал с большей длиной волны также слабо поглощается, но более подвержен турбулентности, которая вызывает изменение локального показателя преломления воздушной среды и, ввиду этого, изменение поляризации фотонов. Ученым приходится решать и побочные задачи. Спутник, наряду с фотонами, несущими сообщение, может принять и фотоны фонового излучения, исходящего как от Солнца, так и отраженного Землей или Луной. Поэтому применяются сверхузконаправленный приемник, а также фильтр для отбора фотонов определенной длины волны. Кроме того, фотоприемник чувствителен к приему фотонов в течение 5 нс периодически с интервалом в 1 мкс. Это должно быть согласовано с параметрами передатчика. Такие ухищрения вновь обуславливают влияние турбулентности. Даже при сохранении поляризации, вследствие турбулентности может измениться скорость передачи фотонов, приводя к фазовому дрожанию. С целью компенсации фазового дрожания впереди каждого фотона высылается световой импульс. Этот синхронизирующий импульс, подвергается такому же, как следующий за ним фотон, влиянию атмосферы. Поэтому независимо от момента получения импульса приемник спутника знает, что через 100 нс нужно открыться для приема информационного фотона. Изменение показателя преломления вследствие турбулентности вызывает уход луча от антенны. Поэтому для направления потока фотонов передающая система отслеживает слабое отражение от синхроимпульсов. Группой Хьюгса осуществлена передача сообщения по квантовому криптографическому каналу через воздушную среду на расстояние в 500 м на телескоп диаметром 3.5 дюйма . Принимаемый фотон попадал на распределитель, который направлял его на тот или иной фильтр. После этого ключ контролировался на наличие ошибок. Реально, даже при отсутствии перехвата, уровень ошибок достигал 1,6% из-за наличия шума, фоновых фотонов и рассогласования. Это несущественно, поскольку при перехвате уровень ошибок обычно более 25%.

Позднее группой Хьюгса было передано сообщения по квантовому каналу через воздушную среду на расстояние 2 км . При испытаниях сигналы передавались горизонтально, вблизи поверхности Земли, где плотность воздуха и флуктуации интенсивности максимальны. Поэтому расстояние в 2 км вблизи поверхности Земли эквивалентны 300 км, отделяющим низкоорбитальный искусственный спутник от Земли.

Таким образом, менее чем за 50 лет квантовая криптография прошла путь от идеи до воплощения в коммерческую систему квантового распределения ключей. Действующая аппаратура позволяет распределять ключи через квантовый канал на расстояние превышающие 100 км (рекорд 184 км), со скоростями достаточными для передачи ключей шифрования, но не достаточными для поточного шифрования магистральных каналов с помощью шифра Вернама. Основными потребителями систем квантовой криптографии в первую очередь выступают министерства обороны, министерства иностранных дел и крупные коммерческие объединения. На настоящий момент высокая стоимость квантовых систем распределения ключей ограничивает их массовое применение для организации конфиденциальной связи между небольшими и средними фирмами и частными лицами.

В гонке вооружений между белыми и черными шляпами индустрия infosec рассматривает квантовое шифрование и распределение квантовых ключей (QKD). Однако это может быть только часть ответа.

Квантовое шифрование, также называемое квантовой криптографией, применяет принципы квантовой механики для шифрования сообщений таким образом, что они никогда не читаются кем-либо за пределами предполагаемого получателя. Он использует множественные состояния квантов в сочетании с его «теорией изменений», что означает, что ее невозможно бессознательно прервать.

Шифрование существует с самого начала, от ассирийцев, защищающих их коммерческую тайну изготовления керамики для немцев, защищающих военные секреты с Enigma. Сегодня он находится под угрозой больше, чем когда-либо прежде. Вот почему некоторые люди ищут квантовое шифрование для защиты данных в будущем.

Вот как шифрование работает на «традиционных» компьютерах: двоичные цифры (0 и 1) систематически отправляются из одного места в другое, а затем расшифровываются симметричным (закрытым) или асимметричным (общедоступным) ключом. Симметричные ключевые шифры, такие как Advanced Encryption Standard (AES), используют один и тот же ключ для шифрования сообщения или файла, в то время как асимметричные шифры, такие как RSA, используют два связанных ключа — частный и открытый. Открытый ключ является общим, но секретный ключ хранится в секрете, чтобы расшифровать информацию.

Однако криптографические протоколы с открытым ключом, такие как криптография Diffie-Hellman, RSA и криптография с эллиптической кривой (ECC), которые выживают на основе того, что они полагаются на большие простые числа, которые трудно поддаются анализу, все чаще находятся под угрозой. Многие в промышленности считают, что их можно обойти с помощью нападений на конечных или боковых каналах, таких как атаки «человек-в-середине», шифрование и бэкдоры. В качестве примеров этой хрупкости RSA-1024 больше не считается безопасным с помощью NIS , в то время как атаки на боковых каналах оказались эффективными до RSA-40963.

Кроме того, беспокойство заключается в том, что эта ситуация только ухудшится с квантовыми компьютерами. Полагают, что они будут находиться где угодно от пяти до 20 лет, квантовые компьютеры потенциально смогут быстро преобразовывать простые числа. Когда это произойдет, каждое шифрованное сообщение, зависящее от шифрования с открытым ключом (с использованием асимметричных клавиш), будет нарушено.

«Квантовые компьютеры вряд ли будут взламывать симметричные методы (AES, 3DES и т. Д.), Но могут взломать общедоступные методы, такие как ECC и RSA», — говорит Билл Бьюкенен, профессор Школы вычислительной техники в Университете Эдинбурга Нейпир в Шотландии. «Интернет часто преодолевает проблемы с взломом при увеличении размеров ключей, поэтому я ожидаю увеличения размеров ключей, чтобы продлить срок хранения для RSA и ECC».

Может ли квантовое шифрование быть долгосрочным решением?

Квантовое шифрование

Криптография Q uantum может, в принципе, позволять вам шифровать сообщение таким образом, чтобы он никогда не читался кем-либо за пределами предполагаемого получателя. Квантовая криптография определяется как «наука об использовании квантовомеханических свойств для выполнения криптографических задач», а определение непрофессионала заключается в том, что множественные состояния квантов в сочетании с его «теорией изменений» означают, что ее невозможно бессознательно прервать.

Это так, как недавно показала BBC в видео, например, держа мороженое на солнце. Выньте это из коробки, выставите солнце, и мороженое будет заметно отличаться от предыдущего. В статье 2004 Стэнфорда это объясняет это лучше, говоря: «Квантовая криптография, которая использует фотоны и опирается на законы квантовой физики вместо« чрезвычайно больших чисел », — это новейшее открытие, которое, как представляется, гарантирует конфиденциальность даже при условии, что подслушивающие устройства с неограниченными вычислениями полномочия «.

Бьюкенен видит множество рыночных возможностей. «Применение квантового шифрования дает возможность заменить существующие методы туннелирования, такие как SSL и Wi-Fi криптография, для создания полного сквозного шифрования по оптоволоконным сетям. Если оптоволоконный кабель используется по всему соединению, поэтому нет необходимости применять шифрование на любом другом уровне, поскольку связь будет защищена на физическом уровне ».

Квантовое шифрование действительно является распределением квантовых ключей
Алан Вудворд, приглашенный профессор кафедры вычислительной техники Университета Суррея, говорит, что квантовое шифрование неверно понято, и люди на самом деле означают квантовое распределение ключей (QKD), «теоретически-безопасное решение для ключевой проблемы обмена». С QKD , фотоны, распределенные в микроскопической квантовой шкале, могут быть горизонтальными или вертикально поляризованными, но «наблюдение за ним или измерение его нарушают квантовое состояние». Это, говорит Вудворд, основано на «теореме о клонировании» в квантовой физике.

«Посмотрев на ошибки степени, вы увидите, что это было нарушено, поэтому вы не доверяете сообщению», — говорит Вудворд, добавив, что как только у вас есть ключ, вы можете вернуться к симметричному шифрованию ключей. QKD, в конечном счете, в конечном счете о замене инфраструктуры открытых ключей (PKI).

Бьюкенен видит огромный потенциал для QKD: «В настоящее время мы не обеспечиваем надлежащую защиту сообщений на физическом уровне от сквозной доставки. С Wi-Fi безопасность обеспечивается только через беспроводной канал. Чтобы обеспечить безопасность связи, мы затем накладываем другие методы туннелирования на коммуникации, например, с помощью VPN или с помощью SSL. Благодаря квантовому шифрованию мы могли бы обеспечить полное сквозное соединение без необходимости использования SSL или VPN ».

Каковы приложения QKD?

Как отмечает Вудворд, QKD уже имеется в продаже, от таких поставщиков, как Toshiba, Qubitekk и ID Quantique. Тем не менее QKD продолжает оставаться дорогостоящим и требует независимой инфраструктуры, в отличие от пост-квантового шифрования, которое может работать по уже существующим сетям.

Именно здесь Китай «украл марш» в привлечении QKD на рынок. Ранее в этом году австрийским и китайским ученым удалось провести первый квантовый зашифрованный видеозвонок, сделав его «по крайней мере в миллион раз безопаснее», чем обычное шифрование. В эксперименте китайцы использовали свой китайский спутник Mikaeus, специально запущенный для проведения экспериментов по квантовой физике, и использовали запутанные пары из Вены в Пекин с ключевыми скоростями до 1 Мбит / с.

Вудворд говорит, что все, что использует шифрование с открытым ключом, может использовать QKD, и одна из причин, по которым китайцы могут быть заинтересованы в этом, — это если они считают, что это физически безопасно, защищая их от НСА и национальных государств. « Не может быть бэкдоров, нет умного математического трюка», — говорит он, ссылаясь на атаку эллиптической кривой. «Это зависит от законов физики, которые намного проще, чем законы математики».

В конечном счете, он ожидает, что он будет использоваться в правительственных, банковских и других высокопроизводительных приложениях. «Сегодня несколько компаний продают оборудование, и это работает, но это дорого, но затраты могут снизиться. Люди, вероятно, увидят это с точки зрения безопасности, например, банковское дело и правительство ».

Другие примеры включают:

  • Исследователи из Оксфордского университета, Nokia и Bay Photonics изобрели систему, которая позволяет шифровать платежные реквизиты, а затем безопасно передавать квантовые ключи между смартфоном и платежным терминалом точки продажи (POS), в то же время мониторинг для любые попытки взломать передачи.
    С 2007 года Швейцария использует квантовую криптографию для проведения безопасного онлайн-голосования на федеральных и региональных выборах. В Женеве голоса зашифровываются на центральной станции подсчета голосов, прежде чем результаты будут передаваться по выделенной линии оптического волокна в удаленное хранилище данных. Результаты защищаются с помощью квантовой криптографии, а наиболее уязвимая часть транзакции данных — когда голосование переходит от счетной станции к центральному репозиторию — является бесперебойным.
  • Компания под названием Quintessence Labs работает над проектом NASA, который обеспечит безопасную связь с Землей со спутниками и астронавтами.
    Небольшое шифровальное устройство, называемое QKarD, может позволить работникам умных сетей отправлять полностью безопасные сигналы с использованием общедоступных сетей передачи данных для управления интеллектуальными электрическими сетями.
  • Поскольку он документирует в этой статье Wired , Дон Хейфорд работает с ID Quantique для создания 650-километровой связи между штаб-квартирой Battelle и Вашингтоном. В прошлом году Battelle использовал QKD для защиты сетей в штаб-квартире Columbus, штат Огайо.

Практические проблемы и вмешательство государства

Однако квантовое шифрование не обязательно является серебряной пулей для обеспечения информационной безопасности. Вудворд цитирует частоту ошибок в шумной, турбулентной вселенной для ненадежности, а также технические трудности при создании одиночных фотонов, необходимых для QKD. Кроме того, QKD на основе волокон может двигаться только на определенном расстоянии, поэтому вам необходимо иметь повторители, которые, таким образом, представляют собой «слабые места».

Бьюкенен отмечает, что инфраструктурная проблема тоже нуждается в широкополосном волокне из конца в конец. «Мы все еще далеки от волоконных систем от конца до конца, так как последняя миля канала связи часто по-прежнему основана на меди. Наряду с этим мы соединяем гибридные системы связи, поэтому мы не можем обеспечить физический канал связи для сквозных соединений ».

Это также не серебряная пуля. Некоторые исследователи недавно обнаружили проблемы безопасности с теоремой Белла, в то время как участие правительства может быть сложным. В конце концов, это эпоха, когда политики не понимают шифрования, где агентства стремятся нарушить сквозное шифрование и поддержать бэкдоры крупными техническими компаниями.

Возможно, неудивительно, что недавно Центр национальной безопасности Великобритании пришел к такому проклятому завершению недавнего доклада о QKD. «QKD имеет фундаментальные практические ограничения, не затрагивает значительную часть проблемы безопасности, [и] плохо понимается с точки зрения потенциальных атак. Напротив, постквантовая криптография с открытым ключом, по-видимому, обеспечивает гораздо более эффективные смягчения для реальных систем связи от угрозы будущих квантовых компьютеров »,

Будущее шифрования может быть гибридным

Вудвард упоминает «бит битвы между криптографами и физиками», особенно по поводу того, что составляет так называемую «абсолютную безопасность». Таким образом, они разрабатывают разные методы, и Вудвард признает, что он не может понять, как они идут придти вместе.

NSA в прошлом году начал планировать переход на квантово-устойчивое шифрование, в то время как Национальный институт стандартов и технологий (NIST) проводит конкурс, чтобы стимулировать работу после квантовых алгоритмов. Есть усилия ЕС по постквантовому и квантовому, в то время как Google полагался на постквантовую решетку для своей системы New Hope на Chrome .

«Я ожидаю, что это будет комбинация как [пост-квантов, так и QKD]. Вы увидите QKD, где имеет смысл тратить больше денег на инфраструктуру, но математические подходы к подобным вам и мне в конечных точках », — говорит Вудворд. Например, он ожидает, что QKD будет «частью путешествия», возможно, от самого себя до сервера WhatsApp, но с постквантом от сервера ко мне как получателю.

Квантовое распределение ключей, безусловно, является прекрасной возможностью для индустрии информационной безопасности, но нам придется подождать немного, прежде чем широко распространенное внедрение становится реальностью.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: