Приспособления растений к изменению температуры и воздействие на них экстремальных температурных условий - фитоэкология с основами лесоводства

Вода – важнейший экологический фактор для всего живого на земле. Для процессов обмена веществ со средой, составляющих основу жизни, необходимо участие воды в качестве растворителя и метаболита. Так у растений вода участвует в реакциях фотосинтеза, минеральные соли поступают в растения из почвы только в виде водных растворов. Вода – главная составная часть тела растений. Даже находясь в анабиозе, растения содержат воду. Особая роль воды наземных растений заключается в постоянном пополнении больших трат ее на испарение в связи с развитием большой фотосинтезирующей поверхности. Вода, обуславливая необходимое тургорное давление, определенным образом участвует и в поддержании формы наземных растений как организмов не имеющих опорного скелета. Также для большой группы растений, живущих в водоемах, морях и океанах, вода является непосредственной средой обитания.

Глава I . Характеристика основных групп растений по отношению к воде.

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают три основных экологических типа: гигрофиты, мезофиты и ксерофиты.

Растения, для которых вода не только необходимый экологический фактор, но непосредственная среда обитания, относятся к водным, называемым гидрофитами.

ГИГРОФИТЫ. Это растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. При довольно большом разнообразии местообитаний, особенностей водного режима и анатомо-морфологических черт всех гигрофитов объединяет отсутствие приспособлений, ограничивающих расход воды, и неспособность выносить даже незначительную ее потерю. Ярко выраженные гигрофиты – травянистые растения и эпифиты влажных тропических лесов, не выносящие сколько–нибудь заметного понижения влажности воздуха. Даже в разгар сезона дождей мелкие эпифитные папоротники на стволах деревьев теряют тургор и засыхают, если на них в течение 2-3 часов падают солнечные лучи. Черты гигрофитов имеют травянистые растения темнохвойных лесов (кислица, майник двулистный, двулепестник альпийский). К гигрофитам можно отнести и виды, растущие на открытых и хорошо освещенных местообитаниях, но в условиях избытка почвенной влаги – близ водоемов, в дельтах рек, в местах выхода грунтовых вод. В наших широтах примером могут служить прибрежные виды: калужница – Calthapalustris, плакун-трава – Lythrumsalikaria, а в странах жаркого климата – папирус, болотные пальмы. Из культурных растений сюда можно отнести рис, культивируемый на полях, залитых водой.

КСЕРОФИТЫ. Это растения сухих местообитаний, способные переносить значительный недостаток влаги – почвенную и атмосферную засуху. Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. К этой группе принадлежат виды пустынь, сухих степей, саванн, колючих редколесий, сухих субтропиков. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции).

Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды при ее недостатке в почве и, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха и высоких температурах. Следовательно, для преодоления недостатка влаги возможны разные пути: увеличение ее поглощения и сокращение расхода, кроме того, способность переносить большие потери воды. Все это используется ксерофитами при адаптации к сухости, но у разных растений в неодинаковой степени, в связи с чем некоторые авторы различают два основных способа преодоления ксерофитами засухи: возможность противостоять иссушению тканей, или активное регулирование водного баланса, и способность выносить сильное иссушение.

В зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов (по Генкелю П.А.): эуксерофиты, гемиксерофиты, пойкилоксерофиты.

К группе ксерофитов относят и суккуленты – растения с сочными листьями или стеблями. Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями(кактусы, некоторые молочаи).

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев имеют своеобразный внешний облик, за что получили название склерофитов. Облик типичного склерофита легко представить на примере чертополоха – Carduuscrispus и пустынных полыней, ковылей, саксаулов.

МЕЗОФИТЫ. Эта группа включает растения, произрастающие в средних условиях увлажнения. Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений.

Мезофиты – группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях. Они связаны переходами с другими экологическими типами растений по отношению к воде, так что четкую границу между ними провести очень трудно. Так, среди луговых мезофитов выделяются виды с повышенным влаголюбием, предпочитающие постоянно сырые или временно заливаемые участки (лисохвост луговой – Alopecuruspratensis, бекмания обыкновенная – Beckmanniaeruciformis).

Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога – Impatiensnolitangere). С другой стороны в местообитаниях с переодическим или постоянным (небольшим) недостатком влаги много мезофитов с теми или иными ксероморфными признаками с повышенной физиологической устойчивостью к засухе. Эта группа переходная между мезофитами ксерофитами, - ксеромезофиты. Примером могут служить многие виды северных степей, сухих сосновых боров, песчаных местообитаний: клевер-белоголовка – Trifoliummontanum, подмаренник желтый – Galiumverum и другие.

Особое место среди мезофитов занимают степные и пустынные весенние эфемеры и эфемероиды. К этой группе принадлежат растения, ранней весной покрывающие степи и пустыни разноцветным цветущим ковром (многолетники – тюльпаны, гусиные луки; однолетники – маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды – в виде покоящихся луковиц, клубней, корневищ. Кроме весенних существуют и осенние эфемероиды, произрастающие в районах с климатическим ритмом средиземноморского типа. Сюда относятся виды родов Crocus, Scilla и другие.

По многим особенностям структуры и физиологии близки к ксерофитам растения, которые по тем или иным причинам испытывают недостаток влаги, сопряженный с действием низких температур. Иногда такие виды в качестве особого подразделения включают в группу ксерофитов, иногда выделяют в самостоятельные экологические типы – психрофиты и криофиты.

Психрофиты – растения влажных и холодных почв в холодных местообитаниях высокогорий и северных широт. Несмотря на достаточное увлажнение почвы, они часто испытывают недостаток влаги (или из-за физиологической сухости, вызванной низкими температурами, или в связи с преобладанием в почве недоступной влаги, как, например, на торфянистых почвах). Среди психрофитов есть травянистые растения (например злаки северных лугов: белоус – Nardusstrikta; высокогорные кавказские злаки: овсяница пестрая –Festukavaria), высокогорные, болотные и тундровые кустарники и кустарнички, как вечнозеленые (вереск – Callunavulgaris), так и с опадающей листвой (карликовые ивы – Salixpolaris, S. herbacea).К психрофитам относятся и хвойные древесные породы умеренных и северных широт.

Криофиты в экологическом отношении очень близки к психрофитам и связаны с ними переходными формами. Это растения сухих и холодных местообитаний – сухих участков тундр, скал, осыпей. Обычно они рассматриваются и характеризуются вместе с психрофитами, поскольку у них много сходных морфологических и физиологических черт. Но среди криофитов есть и весьма своеобразные формы – это растения-подушки высокогорных холодных пустынь.

ГИДРОФИТЫ. Это водные растения. По образу жизни и строению среди них можно выделить погруженные растения и растения с плавающими листьями. Погруженные растения подразделяют на укореняющиеся в донном грунте и взвешенные в толще воды. Из высших растений к первым принадлежат телорез – Stratiotesaloides, шильник водяной – Subulariaaquatika. В эту же группу входят водоросли, прикрепленные к грунту. Из растений, взвешенных в толще воды, можно назвать роголистник погруженный-Ceratophyllumdemersum, пузырчатку обыкновенную – Utrikulariavulgaris, а также многочисленные виды планктонных водорослей.

Растения с плавающими листьями используют частично водную, частично воздушную среду. Из них укореняются в грунте кувшинки из рода Nymphaea, кубышки из рода Nuphar, рдесты, орех водяной – Trapanatans.

Многие виды наряду с плавающими на поверхности воды листьями имеют и подводные. Плавают на поверхности воды, не укореняясь, ряски, водокрас.

К настоящим водным растениям очень близко примыкает и обычно вместе с ними рассматривается группа гелофитов или амфибий – земноводных растений. Это виды береговых и прибрежных местообитаний с избыточным или переменным увлажнением. Они могут расти как в воздушной среде, так и частично погруженными в воду, могут выносить и полное временное заливание. Как в природе нет резкой границы между водными и наземными местообитаниями для растений, так и группа гелофитов связана незаметными переходами, с одной стороны, с настоящими гидрофитами, с другой – с наземными гигрофитами и гигромезофитами. Примеры гелофитов – растений прибрежной полосы пресноводных водоемов и рек: стрелолист – Sagittariasagittifolia, ежеголовка – Sparganiumramosum.

Глава II . Анатомо-морфологические приспособления растений к водному режиму.

Растения, приуроченные к местообитаниям с разными условиями увлажнения, выработали соответствующие приспособления к водному режиму.

Характерные структурные черты гигрофитов – тонкие нежные листовые пластинки с небольшим числом устьиц, не имеющие толстой кутикулы, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей ткани, тонкие слаборазветвленные корни.

Для ксерофитов большое значение имеют разнообразные структурные приспособления к условиям недостатка влаги.

Корневые системы обычно сильно развиты, что помогает растениям увеличить поглощение почвенной влаги. По общей массе корневые системы ксерофитов нередко превышают надземные части, иногда весьма значительно. Так, у многих травянистых и кустарниковых видов среднеазиатских пустынь подземная масса больше надземной в 9-10 раз, а у кесрофитов памирских высокогорных холодных пустынь – в300-400 раз. Корневые системы ксерофитов часто бывают экстенсивного типа, то есть растения имеют длинные корни, распространяющиеся в большом объеме почвы, но сравнительно мало разветвленные. Проникновение таких корней на большую глубину позволяет ксерофитам использовать влагу глубоких почвенных горизонтов, а в отдельных случаях – и грунтовых вод.

У других видов корневые системы интенсивного типа: они охватывают относительно небольшой объем почвы, но благодаря очень густому ветвлению максимально используют почвенную влагу. Корни ряда ксерофильных видов имеют специальные приспособления для запасания влаги. Надземные органы ксерофитов также отличаются своеобразными (так называемыми ксероморфными чертами), которые носят отпечаток трудных условий водоснабжения. У них сильно развита водопроводящая система, что хорошо заметно по густоте сети жилок в листьях, подводящих воду к тканям. Эта черта облегчает ксерофитам пополнение запасов влаги, расходуемой на транспирацию.

Разнообразные структурные приспособления защитного характера, направленные на уменьшение расхода воды, в основном сводятся к следующему:

Общее сокращение транспирирующей поверхности. Многие ксерофиты имеют мелкие, узкие, сильно редуцированные листовые пластинки. В особо засушливых пустынных местообитаниях листья некоторых древесных и кустарниковых пород редуцированы до едва заметных чешуек. У таких видов фотосинтез осуществляют зеленые ветви.

Уменьшение листовой поверхности в наиболее жаркие и сухие периоды вегетационного сезона. Для многих кустарников среднеазиатских, североафриканских и других пустынь, а так же для некоторых видов сухих субтропиков средиземноморья характерен сезонный деформизм листьев: ранней весной при еще благоприятном водном режиме образуются относительно крупные листья, которые летом, при наступлении жары и сухости, сменяются мелкими листьями более ксероморфного строения с меньшей интенсивностью транспирации.

Защита листьев от больших потерь влаги на транспирацию. Она достигается благодаря развитию мощных покровных тканей – толстостенного, иногда многослойного эпидермиса, часто несущего различные выросты и волоски, которые образуют густое “войлочное” опушение поверхности листа. У других видов поверхность покрыта водонепроницаемым слоем толстой кутикулы или воскового налета. Развитие защитных покровов на листьях причина того, что степной травостой имеет тусклые, седоватые оттенки, резко отличающиеся от яркой зелени лугов.


Факторы окружающей среды, действующие на растения, делятся на абиотические и биотические. По отношению к этим двум группам факторов у растений выработались в процессе эволюции своеобразные методы защиты или приспособления к их переживанию.

Так по отношению к абиотическим факторам различают три главных способа приспособления растений:

  • механизмы, позволяющие избежать неблагоприятное воздействие (переход в состояние покоя: образование почек, семян, вегетативных органов),
  • специальные структурные приспособления (различные видоизменения листьев, стеблей цветков и т.д.),
  • физиологические механизмы (С 4 -путь фотосинтеза, САМ-фотосинтез, увеличение вязкости цитоплазмы).

По отношению к биотическим факторам у растений также различают несколько способов приспособления (естественной защиты):

  • приспособления морфологического характера,
  • механизм неспецифического иммунитета, т.е. приспособления биохимического характера (фитонциды, фитоалексины, алкалоиды),
  • механизм специфического иммунитет (выработка специализированных антител против возбудителей болезней).

Приспособление растений к температурному фактору.

Существенное действие на растения оказывают как низкие температуры, так и высокие температуры.

По отношению к низким температурам различают:

  • холодостойкость , т.е. способность растения переносить низкие положительные температуры, при этом у растений не происходят изменения в ферментативном аппарате, поскольку сами ферменты, по-видимому, имеют структурные особенности, позволяющие сохранить пространственную структуру и биологическую активность в низкотемпературных условиях,
  • морозостойкость , т.е. способность растений переносить охлаждение ниже О о С,
  • зимостойкость , т.е. комплексная устойчивость растений против неблагоприятных факторов зимы (морозов, чередующихся с оттепелями, ледяной корки, снеговалов и т.п.).

При переживании растениями зимних условий особое значение имеют типичные повреждения растений и способы профилактики этих повреждений:

  • выпирание,
  • выпревание,
  • вымокание,
  • витрификация.

Выпирание - это гибель озимых культур, наступающая вследствие того, что в почве образуется ледяная прослойка, поднимающая верхний слой почвы вместе с растениями, что приводит к обрыву корневой системы. Ледяная прослойка образуется в том случае, когда талая вода, успевшая просочиться в почву, замерзает с наступлением морозов.

Выпревание - это гибель растений, находящихся под глубоким покровом снега в условиях мягкой зимы. Причина выпревания - расходование на дыхание запасенных с осени веществ без их фотосинтетического пополнения. Устойчивость к выпреванию определяется большим накоплением углеводов и низким уровнем дыхания в зимний период.

Вымокание - это гибель растений, происходящая преимущественно в весенний период или в период продолжительных оттепелей, когда на поверхности почвы скопляется талая вода, не впитавшаяся в замерзшую почву. Причиной гибели является недостаток кислорода. При замерзании этой талой воды образуется ледяная корка, которая может сдавливать и разрывать вмерзшие в нее растения озимых культур.

Витрификация - это переход свободной воды в клетках растения в стеклообразное состояние при резком охлаждении растений ниже 20 градусов мороза. Застывшая растительная ткань в виде аморфной стекловидной массы долго сохраняет свою жизнеспособность. Условия разморожения витрифицированных растений определяют возможность восстановления жизнеспособности:

  • при медленном отогревании ткани восстанавливаются,
  • при быстром отогревании происходит гибель клеток из-за того, что вода в большом количестве, поступающая в протопласт, не успевает перейти в связанное с белками состояние и повреждает структуры ядра и цитоплазмы.

Растения или органы растений, находящиеся в состоянии глубокого покоя, переносят очень низкие температуры, например в экспериментальных условиях удалось сохранить жизнеспособность черенков смородины после замораживания их до -253 о С.

И.И. Туманов в 60-е годы прошлого века обосновал теорию закаливания растений, согласно которой при закаливании в тканях растений физиологические процессы идут с клетках в следующем порядке:

  • на первой фазе закаливания происходит накапливание сахаров, снижается осмотическое давление под влиянием низких положительных температур, прекращается рост растения,
  • на второй фазе закаливания при отрицательных температурах от 0 до -1 о С, т.е. при температурах, еще не вызывающих необратимых повреждений клетки, наблюдается частичная потеря воды клетками, возрастает количество коллоидно-связанной воды.

Закаливанию растений способствует накопление ингибиторов роста, а ослабляет процесс закаливания увеличение концентрации гиббереллинов.

На проявление морозоустойчивости растений оказывает определенное влияние фотопериод в данных климатических условиях, например, длинный день способствует накоплению стимуляторов роста, а короткий день - ингибиторов роста.

Устойчивость к заморозкам у сельскохозяйственных культур различна.

В практике сельского хозяйства применяют следующие приемы повышения холодостойкости растений:

  • закалка набухших семян в течение 5-10 дней попеременно температурами выше и ниже 0 о С,
  • намачивание семян теплолюбивых культур (кукурузы) в растворе алюмокалиевых квасцов,
  • замачивание семян в растворах микроэлементов, азотнокислого аммония ,
  • закалка рассады в теплицах и парниках низкими положительными температурами (открывание рам, поднятие " фартуков" в пленочных теплицах днем).

Повышение морозостойкости при выращивании южных плодовых культур в северных районах достигают путем искусственного сокращения длины дня , при этом укорачивается период вегетации и создаются условия для вызревания древесины, полного ухода в состояние покоя почек, а, следовательно, обеспечивается успешная перезимовка.

Большое значение имеет холодо - и морозостойкость у озимых культур. Узел кущения у озимых культур - это единственный орган, способный к образованию новых корней и надземных побегов, поэтому особое значение имеет его глубина залегания. У зимостойких сортов эта величина в 1,5-2 раза больше, чем у не зимостойких сортов. С увеличением глубины заделки семян при посеве возрастает и глубина залегания узла кущения.

Таким образом можно управлять процессом перезимовки, регулируя сроки, способы посева, глубину посева, нормы высева, активно применяя весеннее боронование, стимулирующее способность к регенерации узла кущения злаков, подбирая сорта, наилучшим образом приспособленные к данным климатическим условиям.

По отношению к высоким температурам различают:

  • жаростойкость - способность растений переносить перегрев от 40 до 65 о С. При повреждении растений высокими температурами без изменения уровня влажности в тканях происходит разрушение белково-липидного комплекса мембран, клетки теряют осмотические свойства, происходит обезвоживание тканей, разрушение коллоидных структур цитоплазмы.
  • засухоустойчивость - способность растений переносить атмосферную и почвенную засуху.

Засухи делятся на следующие виды в зависимости от времени наступления:

  • весенняя засуха характеризуется сравнительно низкими температурами, низкой относительной влажностью воздуха и сильными сухими ветрами,
  • летняя засуха характеризуется высокими температурами, низкой влажностью воздуха и повышенной испаряемостью,
  • осенняя засуха характеризуется высокими температурами, низкой влажностью воздуха и сильным иссушением почвы.

В зависимости от особенностей протекания засухи делятся на два типа:

1. Почвенная засуха - характеризуется постепенным иссушением почвы и растения в некоторой степени способны временно приспособиться к ней. При этом виде засухи завядают сначала нижние листья. Но при достаточно длительном периоде продолжительности почвенной засухи в конце лета и осенью, она гораздо опаснее кратковременной атмосферной засухи.

Многие растения степей добывают воду глубоко уходящей в почву корневой системой: 1 - корень фалькарии; 2 - корень шалфея; 3 - корень вероники сизой

Атмосферная засуха - характеризуется резким уменьшением относительной влажности воздуха (до 10-20%), вследствие чего корневая система не успевает подавать воду в листья при сильно увеличившейся транспирации. Происходит быстрое обезвоживание верхних листьев, репродуктивных органов. Для атмосферной засухи характерны такие явления, как " запал" и " захват". Запал - это повреждение листьев и других надземных органов под действием перегрева и высокой сухости воздуха. При сильной степени запала листья высыхают, оставаясь зелеными , при обычном запале хлорофилл распадается и листья буреют. Захват - это повреждение хлебов суховеями в стадии молочной или молочно-восковой спелости (конец июня - начало июля). Вследствие перегрева и резкого водного дефицита зерновки пересыхают, белки сворачиваются, нарушается отток пластических веществ из листьев и соломы. зерно щуплое с низкой всхожестью. Поэтому в зоне суховеев используют скороспелые сорта и проводят агролесомелиоративные мероприятия, снижающие интенсивность суховеев.

Ко всем видам воздействия температурным фактором растения приспосабливаются используя все виды приспособлений (морфологические - для снижения транспирации, физиологические - для изменения вязкости цитоплазмы, переход в состояние покоя).

Устойчивость растений к засухе или к повышенным температурам определяется различными методами как лабораторными (в специальных опытах в использованием отдельных тканей и органов), так и лабораторно-полевыми (в специальных опытах в вегетационных сосудах с контролируемым режимом полива). В полевых условиях засухо - и жаростойкость растений и необходимость полива определяют с помощью различных приборов:

" тургомера" (принцип действия - измерение толщины листьев при воздействии высокой температуры),

ЭСТЛП-1а (прибор для определения электрического сопротивления тканей листьев) (принцип действия - измерение электрического сопротивления тканей листьев, которое имеет тесную отрицательную сопряженность с содержанием воды в листьях и положительную сопряженность с водоудерживающей способностью листьев).

По отношению к температурному фактору и водному режиму все растения подразделяются на следующие экологические типы:

1. Ксерофиты ( приспособлены к атмосферной засухе) и делятся на подтипы:

суккуленты (стойки к перегреву, содержат большое количество воды и медленно ее расходуют - кактусы, алоэ, очиток),

эвксерофиты (хорошо переносят засуху за счет морфологических и физиологических приспособлений - верблюжья колючка, полынь),

гемиксерофиты (полуксерофиты) (переносят обезвоживание и перегрев за счет глубокой корневой системы - шалфей),

стипаксерофиты (выносят перегрев, но почвенную засуху переносят плохо - ковыль и другие степные злаки),

пойкилоксерофиты (уходят от неблагоприятных условий - степные тюльпаны, лишайники),

2. Гигрофиты - водные растения - не переносят засухи и высоких температур,

3. Мезофиты - произрастают в условиях достаточного водоснабжения - подавляющее большинство культурных растений.

Причины возникновения полегания и меры борьбы с ним.

Под влиянием избыточного увлажнения, а также при наличии ветра, у мезофитов, имеющих достаточно большую вегетативную массу, наблюдается явление полегания . Это явление приносит большие неудобства при возделывании растений с использованием промышленных технологий обработки растений и их уборке, особенно большие убытки наблюдаются при полегании злаковых культур. Это явление связано с тем, что при избыточном увлажнении отмечается быстрый рост растений, междоузлия разрастаются, вытягиваются, а образование скелетных структур (синтез целлюлозы, лигнина, входящих в клеточные стенки) запаздывает, поэтому прочность стебля уменьшается.

Для снятия этого явления необходимо предпринимать следующие профилактические меры:

  • недопущение загущения посевов,
  • недопущение передозировки азотных удобрений,
  • недопущение чрезмерного увлажнения при искусственном орошении.

При тенденции к полеганию для высокорослых культур рекомендуется использовать ретарданты, т.е. вещества, замедляющие рост растений, например, хлорхолинхлорид .

4. Приспособление растений к уровню кислотности почвы.

Большое значение имеет уровень рН почвы, определяющий как устойчивость растений в целом, так и иммунитет к тем или иным возбудителям болезней и вредителям. Уровень кислотности почвы определяет подвижность питательных веществ, доступность их растениям. Такие сельскохозяйственные культуры, как арбуз, баклажан, гречиха, земляника, картофель, крыжовник, лен, малина, пастернак, петрушка, рис, смородина, табак, яблоня, оптимальным уровнем кислотности является рН = 5,5-6,5, а виноград, горох, шампиньон, капуста, кукуруза, лимон, лук, люцерна, морковь, огурец, перец, подсолнечник, пшеница, редис, салат, свекла, сельдерей, слива, томат, фасоль, ячмень предпочитают более щелочные почвы, где уровень рН = 6,0-7,5.

Уровень кислотности почвы влияет на накопление и превращение в доступную форму в почве тяжелых металлов . Как было отмечено на международной научно-практической конференции " Мины замедленного действия", проходившей в Москве в 1992 году, в конце 80-ых годов было зафиксировано резкое увеличение концентрации тяжелых металлов и других токсичных веществ в продуктах сельского хозяйства, а также в подземных водах, в реках, при этом никаких объективных показателей к этому в виде выбросов предприятий, аварий, не наблюдалось. Оказалось, что это повышение концентрации тяжелых металлов является последствием длительного поступления в среду небольших количеств этих веществ, которые накапливаются в почве или осадочных отложениях. При повышении кислотности почвы почва перестает удерживать эти загрязняющие вещества. Установлено, например, что при снижении рН почвы с 6,0 до 5,5 происходит опасный выброс кадмия, который способен накапливаться в течение многих лет, поскольку входит в состав минеральных удобрений в виде ничтожной примеси.



Выработалось за долгие годы эволюции, как необходимость образования семян и плодоношения. Каждый вид растений по-своему приспосабливается к опылению.

Типы опыления растений

Типы опыления растений зависят от вида растений, от условий их произрастания. Различают: самоопыление и перекрестное опыление . В естественных условиях опыление растений происходит с помощью ветра, насекомых, воды. Возможно также и искусственное опыление . Перекрестное опыление - то есть опыление, при котором пыльца одного растения попадает на рыльце пестика другого, дает более качественные семена, чем при самоопылении.

Приспособленность к опылению у хвойных растений

Если весной пойти в сосновый лес, то можно увидеть, как много пыльцы образуется у хвойных деревьев . Понятно, почему выработалась у них такая приспособленность к опылению . Здесь происходит перекрестное опыление с помощью ветра. Но хвоя задерживает много пыльцы, и, чтобы произошло опыление, ее требуется больше, чем - , тополю, у которых опыление происходит ранней весной, когда на деревьях листья еще не распустились.

Бывают весны, когда цветение и очень обильное, пыльцы в хвойном лесу бывает столько, что она сплошной пеленой оседает на землю и хорошо заметна на тропинках, на поверхности стоячих водоемов.

Приспособленность к опылению растений из семейства злаковых

Очень много образуется пыльцы и у растений из семейства злаковых . Они также опыляются ветром. Бывали ли вы когда-либо в поле во время цветения ржи? Если нет, то обязательно побывайте. Не пожалеете.

Раннее тихое утро. Солнце едва лишь поднялось над горизонтом. Над ржаным полем стоит легчайший туман. Но нет, это не туман! Это и не дым или поднявшаяся в воздух дорожная пыль. Это то же, что мы наблюдали в зарослях орешника ранней весной.

Подул едва приметный ветерок, и над полем ржи заклубились и тихо поплыли по ветру прозрачные облачка пыльцы. Рожь цветет! Вы ощущаете тончайший запах цветущего ржаного поля.



Рожь цветет

Несмотря на обилие пыльцы, приспособленность цветков ржи к опылению не вполне совершенна. Тычинки ржи после созревания свисают на тычиночной нити и располагаются ниже ветвистого пестика. Поэтому часть цветков остается не опыленной, а следовательно, не образует плодов - зерен.

Раньше люди вносили такое усовершенствование в процесс опыления ржи: во время цветения этой культуры протягивали поперек полосы веревку и, волоча ее за концы, встряхивали колосья. Благодаря такому приему условия опыления улучшались: зерна в колосьях завязывается больше, урожай повышался.

Приспособленность к опылению насекомоопыляемых растений

Иную картину опыления можно наблюдать у растений, для которых посредником при опылении является не ветер, а насекомые. Такие насекомоопыляемые растения легко отличить от ветроопыляемых по внешнему виду.



У них имеется яркий, обычно издали заметный околоцветник (венчик, иногда чашечка), у некоторых - сильный запах, у других - нектар. Если цветки мелкие, то они образуют крупные, видимые издалека соцветия.

Таковы сережки , опыляемые насекомыми, кисти черемухи , щитки , калины, соцветия-зонтики у , укропа, тмина и других растений, составляющих по этому признаку семейство зонтичных.

Интересно, что пыльца насекомоопыляемых растений иная по сравнению с ветроопыляемыми: поверхность пылинок не гладкая, а имеет различные выступы, шипики, и поэтому пыльца легко пристает к телу насекомого.

Раннецветущие дубравные травы

Вот в той же роще, где первым запылил орешник, вслед за ним здесь зацвели раннецветущие дубравные травы . Как разнообразны они по окраске! Под ногами словно развернулся нарядный ковер с нежно-пестрыми узорами.

Здесь и хохлатка , и медуница , и ветреница дубравная с белыми нежными цветками, и ветреница лютичная с желтым венчиком, и весенний горошек (сочевичник) и, наконец, похожий на крошечную желтую лилию цветочек гусиного лука . Вдали влажная низинка желта от лаково-золотистых цветков чистяка . Все эти растения опыляются насекомыми - шмелями, бабочками, пчелами .
Если присесть на пенек и понаблюдать за хлопотливой деятельностью насекомых, которых в теплый солнечный день здесь бывает немало, то можно увидеть следующую картину.

Вот весь измазавшийся пыльцой басит толстый мохнатый шмель. Он деловито перелетает от одного соцветия хохлатки к другому, собирает нектар, одновременно мимоходом опыляя цветки.

Если внимательно присмотреться к шмелю и к цветку хохлатки, то можно заметить интересное соответствие между строением тела опыляющего насекомого и строением цветка опыляемого растения - они как будто созданы один для другого.

Рядом на медунице расположилась бабочка. Она распрямила длинный хоботок, обычно свернутый спиралькой, и высасывает нектар из глубокой воронки цветка. И здесь, можно наблюдать приспособленность опылителя-насекомого к строению опыляемого цветка: только некоторые насекомые, имеющие длинный хоботок, могут добраться до нектара медуницы и одновременно опылить растение.



Найдите растущий здесь же копытень с округлыми, похожими на след лошадиного копыта листьями и малозаметными буро-красными, приткнувшимися к земле цветками, и вы обнаружите опылителей - мелких, летающих у земли или ползающих по ней мушек.

Издали видны желтые пятна цветущего селезеночник а. У этого растения цветки мелки и невзрачны, зато листья, окружающие цветки, имеют ярко-желтую окраску, что делает растение заметным издали. Здесь листья заменили обычный для насекомоопыляемых цветов яркий околоцветник.

Приспособленность растений к перекрестному опылению

Необычайное разнообразие приспособленность к перекрестному опылению можно найти среди пестрого разнотравья лугов, у растений светлых лесов, перелесков, кустарниковых зарослей и пустырей.

Здесь, как правило, наблюдается в большей или меньшей степени связи между опылителем-насекомым и опыляемым растением. Есть растения, цветы которых опыляются очень разнообразными насекомыми: пчелами, шмелями, бабочками, мухами , и есть растения, опыляемые лишь определенными видами насекомых .

Это легко проследить в той же дубраве. Когда распустятся на деревьях листья и в лесу потемнеет, успеют отцвести и медуницы, и хохлатки, и другие рано цветущие травы.

Начинается новая волна цветения дубравных растений, но это уже растения с белыми цветками, более заметными в потемневшем лесу. У них и опылители другие - в основном различные мухи.

Натуралисты, изучая опыление у растений, давно установили интересный факт: опыление, как правило, совершается перекрестно, то-есть пыльца с цветка одного растения попадает на рыльце пестика цветка другого растения этого же вида.

Это обстоятельство очень заинтересовало натуралистов. Ч. Дарвин, занимаясь этим вопросом, пришел к твердому убеждению, что

…природа чувствует отвращение к постоянному самооплодотворению.

Таким образом, он считал, что перекрестное опыление - биологически полезное для растений явление и что всевозможные приспособления, мешающие растениям самоопыляться, выработались у них в процессе исторического развития.

Для того чтобы убедиться в этом, Дарвин осуществил интересные опыты. Он отбирал одинаковые семена и выращивал растения в совершенно однородных условиях. После того как растения зацветали, часть из них ученый искусственно опылил перекрестно, у другой же части цветки самоопылились.

Когда были собраны семена, он снова отдельно вырастил из них растения. При этом оказалось, что растения, выросшие из семян, полученных перекрестным опылением, развивались более пышно, мощно, чем растения из семян, полученных самоопылением. Своими наблюдениями и опытами Дарвин доказал полезность перекрестного опыления у растений .

Перекрестное опыление ветроопыляемых растений

Приспособления для перекрестного опыления у ветроопыляемых растений сравнительно просты.

У ржи, например, когда раскрываются цветочные чешуйки (расцветают цветки колоса), тычинки свисают вниз на тонкой тычиночной нити, и пестик оказывается выше тычинки. Благодаря этому самоопыление не происходит: ветер, подхватив освободившуюся из пыльников пыльцу, относит ее от колоса, где она образовалась, на соседние колосья, и цветки опыляются перекрестно.

Перекрестное опыления у двудомных растений

Двудомность у растений , очевидно, также надо рассматривать как приспособление к перекрестному опылению. Пыльца, переносимая от мужского растения к женскому ветром (тополь, осина) или насекомыми (ива), может, конечно, опылять только перекрестно.

Перекрестного опыления у однодомных растений

Интересные наблюдения проводились за однодомными растениями . Установлено, например, что дают нормально всхожие семена лишь в том случае, если они растут группами, то-есть если обеспечено перекрестное опыление. Одиночные же лиственницы дают обычно не всхожие семена (всхожесть их, как правило, не превышает 5 процентов).

Растения опыляемые насекомыми

Но особенно разнообразны и сложны приспособления, препятствующие самоопылению у растений, опыляемых насекомыми .

Здесь творчество природы проявилось особенно богато: либо тычинки и пестики в каждом отдельном цветке созревают не в одно и то же время и поэтому самоопыления не происходит, либо тычинки и пестики расположены так, что опыляющее насекомое при добывании нектара измажется пыльцой, но не заденет и не опылит рыльце пестика этого цветка, а, перелетев на другой цветок, с иным расположением тычинок и пестика, оставит здесь принесенные на себе пылинки, и т. д.

По лесам и лугам обычно встречается несколько видов герани , или журавельника , с лиловыми, синими, пурпурными или красноватыми цветами. Интересно наблюдать, как происходит перекрестное опыление у этих растений.



Когда журавельник зацветает, его лепестки раскрываются и пыльники начинают лопаться, освобождая пыльцу. При этом тычинки созревают постепенно, в определенном порядке, а так как пестик еще не созрел, то пыльца может опылить лишь другие цветки. Пестик созревает для опыления лишь тогда, когда последние пыльники отдадут пыльцу. Такие же особенности цветения имеются у общеизвестного лекарственного растения , у разных видов колокольчиков, гвоздик и многих других.

Встречающееся по лугам и лесным полянкам растение (баранчики, золотые ключики) имеет цветки двух типов. У одних рыльца пестиков расположены ниже тычинок, а у других - выше. Насекомые-опылители, прилетая на цветок первого типа и пробираясь к нектару, расположенному в глубине трубочки венчика, пачкаются пыльцой на уровне тычинок.

Перелетев на цветок с высоким пестиком и углубляясь в него, они задевают рыльце пестика и производят перекрестное опыление. Подобное же строение цветков, приспособленных к перекрестному опылению, имеется у многих других растений.

Сложные формы перекрестного опыления

Иногда приспособления растений для перекрестного опыления принимают исключительно сложные формы. Примером может служить растение с грушевидными плодами - кирказон , обычное для кустарниковых зарослей Волги, Оки и других рек.

Тычинки и пестики кирказона находятся в особом утолщении цветка, похожем на кувшинчик. Туда заползает много мелких мушек, привлекаемых нектаром цветков.

Они лакомятся нектаром и опыляют пестики пыльцой, принесенной с других цветков кирказона, но когда пытаются покинуть цветок, то это оказывается невозможным: им навстречу торчит множество жестких волосков. Эти волоски не препятствовали мушкам проникать вглубь кувшинчика, но при выходе стали непреодолимой преградой. Мушки оказались пленницами цветка!

Между тем в цветке дозрели тычинки, пыльники лопаются и осыпают мушек пыльцой. Теперь мушки могут свободно покинуть цветок, так как волоски завяли и перестали быть препятствием к выходу на волю. Выбравшись из одного цветка, мушки попадают во временный плен в другой цветок кирказона и производят здесь опыление принесенной пыльцой. Выберутся они из цветка лишь после того, как окажутся осыпанными новой пыльцой.

Перекрестному опылению у растений семейства орхидных

Но особенно интересные приспособления к перекрестному опылению имеются у растений, относящихся к семейству орхидных . Это семейство насчитывает до 15 тысяч видов.

Среди орхидей много красивых растений. Цветы некоторых из них похожи издали на бабочек, птичек, жуков с самой разнообразной расцветкой - со всевозможными пятнышками, полосками, сеточками, крапинками, жилками, извилистыми линиями. Особенно богата орхидеями Южная Америка.

У орхидей способы опыления очень разнообразны. Здесь можно наблюдать узкую специализацию определенных видов насекомых к определенным видам растении. Опылителями у орхидей являются не только насекомые, но даже птички колибри, самые маленькие в мире, и даже улитки.

В нашей стране также встречаются интересные орхидеи: по лесам и лугам нередки ятрышник (кукушкины слезки), любка (ночная фиалка) с сильным приятным запахом, по лесам - очень изящная орхидея венерин башмачок .



У орхидных имеется любопытное приспособление к опылению, отсутствующее у других насекомоопыляемых: пыльца их собрана в особый пакетик, с клейкой ножкой. При опылении ножка прикасается к голове насекомого-опылителя и пристает к ней. Насекомое улетает, неся на себе пакетик с пыльцой.

Во время посещения другого цветка насекомое опыляет его, прикасаясь пакетиком к рыльцу пестика.

Исследуя опыление, ученые установили, что между насекомыми и растением не всегда имеется обоюдная полезная связь - иногда эта связь приносит пользу лишь одному участнику и ничего не дает другому.

Растение Индонезии раффлезия



Насекомые, откладывающие яйцо в мясо, привлекаются запахом раффлезии, ползают по цветку, опыляют его, но сами от растения ничего, кроме запаха, не получают. Раффлезию поэтому иногда называют растением-обманщиком.

Есть также немало насекомых, которые добывают нектар с цветков, но в опылении не участвуют. Они достигают нектара, прокусывая снаружи цветок в месте расположения нектарников. Это пример относительной полезности приспособления цветка к привлечению насекомых.

Другие способы, благоприятствующих продолжению рода

У многих рано цветущих растений дубрав наблюдается, с одной стороны, несовершенство приспособлений для опыления, а с другой - большая пластичность в выработке свойств, благоприятствующих продолжению рода.

Эти растения обычно хорошо приспособлены к перекрестному опылению насекомыми, и все же нередко случается, что цветки остаются не опыленными: слишком капризна весенняя погода и яркие, солнечные дни прерываются холодными и дождливыми.

Поэтому наши рано цветущие дубравные травы, как правило, дают очень мало семян. Сохранение вида этих растений было бы затруднено, если бы у них не было хорошо развито вегетативное размножение.

Ландыши

Ландыши часто растут целыми полянками. Если осторожно раскопать корни одного из ландышей, то окажется, что его корни являются продолжением корней соседнего растения и т. д. Иными словами - ландыши, быть может, всей полянки произошли вегетативно от одного растения, выросшего из семени.



Семена ландыш образует редко. Они находятся в оранжевых ягодах, поедаемых птицами, и стоит только одному семени, прошедшему через кишечник птицы, попасть в благоприятные условия, семя взойдет, и через несколько лет от растения вегетативно образуется полянка ландышей.

Среди растений дубравы очень любопытный способ размножения наблюдается у фиалки удивительной , у нее обычно цветки, опыляемые насекомыми, семян почти не дают. Однако лишь только у фиалки удивительной отцветут яркие светло-синие пахучие цветки, как она дает новые.



Эти цветки не имеют ни ярких лепестков, ни запаха, ни нектара, они даже не раскрываются. Но внутри этих цветков происходит самоопыление и образуется много семян, имеющих особые мясистые придатки, поедаемые лесными муравьями. Муравьи, растаскивая придатки по лесу, способствуют распространению растений.

Несомненно, такая поистине удивительная приспособленность растений к опылению выработались у фиалки в связи с ее жизнью в условиях леса. Здесь она обрела не только новый способ образовывать семена, но и нового союзника - муравьев, способствующих их распространению.

Из приведенных примеров понятно, что перекрестное опыление у растений действительно очень важное жизненное явление.

> Приспособления растений к изменению температуры и воздействие на них экстремальных температурных условий

Широкая распространенность растений в различных климатических зонах привела к появлению приспособлений к различным, в том числе и экстремальных, температурных условий. По отношению к низким температурам различают:

холодостойкость - это способность растений в течение длительного времени переносить низкие дополнительные положительные температуры;

морозостойкость - способность растений переносить низкие минусовые температуры;

зимостойкость - способность растений без повреждений переносить неблагоприятные погодные условия зимой.

По отношению к высоким температурам различают следующие свойства растений:

теплолюбивость - потребность растений в тепле в течение вегетационного периода;

жаростойкость - способность растений переносить перегрев (воздействие высоких температур)

засухоустойчивость - способность растений переносить длительные периоды засухи (снижение влажности воздуха и почвы и высокие температуры воздуха и почвы) без значительных нарушений жизненных функций.

В процессе эволюции растения выработали различные приспособления к экстремальным температурам. Устойчивость к низким и высоким температурам - генетически детерминирована признак вида. Холодостойкость свойственна растениям умеренной зоны (ячмень, овес, лен). Тропические и субтропические растения повреждаются и отмирают при температурах от 0 до 10 ° С (кофе, огурцы).

Различия в уровне физиологических процессов и функций клеток при воздействии низких температур могут служить диагностическим признаком при сравнении холодоустойчивости растений (видов, сортов). Устойчивость растений к холоду зависит от периода онтогенеза. Чувствительным к низким температурам е эмбриональный период развития. Например, в малоустойчив к холоду кукурузы при температуре 18 ° С семена прорастают на четвертый день, а при + 10 ° С - на двенадцатый. Кроме того, различные части и органы растений по-разному реагируют на холод. Так, цветы более чувствительны к охлаждению, чем плоды и листья, а листья и корни - чувствительнее побеги.

Холодостойкость некоторых видов теплолюбивых растений можно увеличить путем воздействия на семена и рассаду резких перепадов температур (низких и нормальных). Такое закаливание стимулирует защитную перестройку метаболизма растений. К методам повышения устойчивости принадлежит также прививки с использованием более устойчивого пидвоя, замачиванием семян в растворах микроэлементов или в 0,25% растворе аммиачной селитры. Влияние вязкости цитоплазмы на холодостойкость растений продемонстрировали в эксперименте П. А. Шенкель и К. А. Баданова (1956). Холодостойкость листьев элодеи менялась при изменении вязкости цитоплазмы с помощью растворов солей. Действие раствора СаСl2 повышала, а раствора КС1 снижала вязкость цитоплазмы. В обоих случаях определяли количество живых клеток после замораживания до - 1,5 ° С. Результаты свидетельствуют, что увеличение вязкости цитоплазмы под влиянием солевого раствора уменьшало холодостойкость растения, а уменьшение вязкости приводило к соответствующему росту устойчивости к холоду (рис. 4.1).

Рис. 4.1. Влияние катионов солей иа вязкость цитоплазмы и устойчивость листьев элодеи к холоду

(По П.А. шенкеля и Е.А. Богдановой, 1956)

В зимний период морозы ниже - 20 ° С - обычное явление для многих стран, в том числе и для Украины. Мороз влияет на однолетние, двухлетние и многолетние растения, поэтому они переносят низкие температуры в разных стадиях онтогенеза:

однолетние - в виде семян или небольших растений (озимые)

двухлетние и многолетние - в клубнях, корнеплодах, луковицах, корневищах, в виде взрослых растений.

Способность переносить морозы есть наследственным признаком данного вида растений, но морозостойкость отдельного растения зависит от многих факторов, прежде всего, от условий, которые предшествовали морозам. Постепенное снижение температуры (на 0,5 - 1 ° С в час) приводит к замерзанию жидкости в межклеточном пространстве. При незначительном образования льда в межклетниках растения, после его таяния, сохраняют жизнеспособность. Так, например, при температуре от - 5 ° С до - 6 ° С в листьях капусты замерзания части жидкости происходит в межклеточном пространстве. При постепенном таянии этого льда межклетники заполняются водой, которая поглощается клетками, и листья возвращаются в нормальное состояние. При резком снижении температуры возможно образование льда в протоплазме. Это, как правило, приводит к повреждению и гибели клеток. Необходимо также помнить, что в первую очередь повреждаются те растения или органы растения, в тканях которых содержится больше воды и меньше сахаров. Например, семена могут переносить температуры до - 196 ° С. Это обусловлено низким содержанием воды, что обеспечивает устойчивость к значительным морозов.

Приспособления растений к минимальным температур окружающей среды колеблется в значительных пределах. На "полюсе холода" в Якутии (Россия), где температура воздуха зимой понижается до - 70 ° С, наряду с широко распространенной лиственницей даурской, растут также ель сибирская, сосна обыкновенная, береза повислая, осина и другие хорошо известные древесные породы. В агроценозах выращивается озимая рожь сорта "Ситнинивське". Покрыто снегом, оно не вымерзает при морозах до - ЗО ° С. Чемпионами морозостойкости является низшие растения, многочисленные представители которых погибают даже при температуре жидкого гелия (-269 ° С).

Среди растений тропиков (исключая высокогорных районов) морозостойкие формы растений отсутствуют. Все представители зоны влажных тропических лесов не могут переносить морозы. Кофейное дерево, шоколадное дерево, ананасы и другие тропические растения даже в субтропиках под Батуми (Кавказское побережье Черного моря) не могут расти под открытым небом. Причина данного явления заключается в том, что в тропической зоне температура воздуха не только постоянно высокая, но и держится почти на одном уровне.

В высокогорных районах тропиков встречаются растения, которые имеют определенную морозостойкость, которая тем больше, чем выше они растут в горах. В тропических районах Южной Америки примерно до высоты 1200 м над уровнем моря растут такие растения, как какао, ваниль, кокос и тому подобное. На плоскогорьях того же региона на высоте от 1200 до 2400 м распространены представители субтропической зоны - цитрусовые. Выше 2400 м растут обычные для умеренной зоны деревья - яблони, груши, сливы. Подобная картина наблюдается и в других горных тропических районах Азии, на островах Цейлоне, Яве и др. Вертикальная зональность играет значительную роль в морозостойкости тропических растений. Если какие-то из тропических растений способны переносить небольшие морозы, то можно безошибочно утверждать, что это жители высокогорных районов. Примером может быть хинное дерево, родиной которого является тропическая Южная Америка. Все его виды растут на восточных склонах Кордильер. Виды, которые дают кору с содержанием хинина встречаются в условиях постоянного теплого климата до высоты 2000 м. Те же виды, поднимающиеся до высоты 3400 м над уровнем моря, отличаются от предыдущих некоторой зимостойкостью и переносят без повреждений мороз до - 1 ° С.

Субтропическая зона характеризуется большей амплитудой колебаний температуры воздуха. В некоторых регионах, где зимы почти не бывает, температура в зимние месяцы только на короткий период снижается на один - три градуса ниже нуля. К субтропической зоны входит также Черноморское побережье Кавказа, где морозы в зимний период изредка достигают - 10 ° С. В соответствии с этим, растения субтропиков, в зависимости от их происхождения, могут быть как слабо морозостойкими, так и достаточно морозостойкими. Например, индийские и юго китайские формы чая на Черноморском побережье Кавказа культивируются только в районе Батуми (на юге региона). В то же время, северо-китайские формы этой культуры успешно выращиваются в районе Сочи - Адлер, на северных склонах Кавказского хребта (Майкоп, Горячий Ключ), а также даже на Закарпатье.

Обычно, как и в тропиках, в субтропиках в морозостойкости также четко проявляется высотная зональность. Примером может быть распространение картофеля (Solanum tuberosum) в Южной Америке, где и до сих пор она растет в естественных условиях (остров Хило у побережья Чили). Эта субтропическое растение слабо морозостойкая и не выдерживает длительного снижения температуры до - 3,5 ° С. В то же время, в районах Анд растет разновидность картофеля, который переносит морозы до - 8 ° С. Некоторые формы этого морозостойкой картофеля выращиваются местным населением на высоте почти у границы вечного снега.

Тесная связь между морозостойкостью и географическому происхождению оказывается у растений северной и умеренной зон. Общеизвестна белая акация, например, является обычным видом для растительности Харьковской, Полтавской и Кировоградской областей Украины. В то же время, в Московской и Ленинградской областях России это растение почти не встречается, так как вымерзает без специальных защитных мероприятий. Амурский бархат, обычный для юга Дальнего Востока, в Сибири уже не встречается.

Для того, чтобы переносить зимний период и низкие температуры, растения выработали ряд приспособлений. В их надземной части накапливаются запасные питательные вещества - сахара и масла, а в подземной - крахмал. Они используются в течение зимы на дыхание. Сахар увеличивает осмотическое давление в клетках; благодаря специфической действия в цитоплазме препятствует ее коагуляции. Масла - вытесняют в вакуоли воду и защищают клетку от вымерзания. Приспособления растений к зимовке и низких температур проявляется в многочисленных особенностях их форм, строения и физиологических свойствах. Уменьшение поверхности испарения в зимующих деревьев и кустов достигается не только сбросом на зиму листьев но и развитием ксероморфные структур. Проявлением этого является шпильки сосны, ели, пихты.

Ксероморфизм (от греч. Xeros - сухой и morphe - форма) - совокупность морфологических и анатомических признаков, возникших у растений как приспособление к засушливым условиям произрастания.

Защищает от различных перепадов и минимальных значений температуры живые внутренние клетки коры, камбия и древесины толстый слой коры. Например, на бархат амурский постепенно образуется толстый пробковый слой. Другие растения имеют водо- и повитрянонепроникну, покрытую толстой кутикулой кожицу, очень мелкие клетки, сильно развитые сосудистые пучки.

Кутикула - тонкая бесструктурная пленка, покрывающая эпидермис листьев и молодых стеблей, построенная с нерастворимого липидного полимера кутин с погруженными в него растительными восками.

Распространенной морфологическим признаком зимостойкости растений является сланнисть вдоль поверхности земли стеблей и листьев, поскольку так они лучше защищены от ветра и морозов снежным покровом. Примером может быть сосновый сланец, который летом поднимается над поверхностью почвы на несколько метров, а зимой вытягивается вдоль ее. Подобные растения очень распространены на Крайнем Севере и высокогорье. Характерной чертой растений Памира, наряду с низкорослостью и сланнистю, является расположение большого количества побегов под землей. Это явление у растений довольно распространенное и не только для указанного района - оно четко выраженное во всех корневищных растений, зимующих. Ярким примером служит известный пырей ползучий. Важное значение для зимостойкости растений имеют положения узлов кущения и корневой шейки. В травянистых двулетников (озимые, свекла) в первый год от узлов кущения и корневых шеек вырастают листья, тогда как укороченные побеги с почками остаются в почве.

Растения, которые зимуют с зелеными листьями, способные их скручивать, что связано с особенностями строения клеточной оболочки (например, маньчжурский рододендрон). Благодаря этому уменьшается площадь испарения, а также создается специфический температурный режим внутри скрученного листа. Существуют растения ежегодно зимуют с цветочными бутонами и даже с открытыми цветками - это большая группа подснежников. По некоторым наблюдениям под Петергофом (Россия) зимуют в цветущем состоянии фиалка полевая, фиалка гибридная, ромашка пахучая, одуванчик. Растут под снегом в течение зимы известные нам ветреница, звездочка, хохлатка, подснежники. Для части растений даже необходимо, чтобы они прошли стадию воздействия низких температур для успешного цветения и плодоношения. В агротехнике известна яровизация - это индукции процессов образования цветов холодом.

Способность выдерживать высокие температуры также имеет важное значение при приспособлении растений к условиям окружающей среды. По жаростойкостью выделяют три группы растений и прокариот:

жаростойкие - термофильные сине-зеленые водоросли и бактерии горячих минеральных источников, способные переносить повышенные температуры до + 75 - + 100 ° С. Этим организмам свойственны высокий уровень метаболизма, повышенное содержание РНК в клетках, устойчивость белков цитоплазмы к коагуляции;

жаровитривали - растения пустынь и сухих мест произрастания (суккуленты, некоторые кактусы, представители семейства толстянковых), которые выдерживают нагрев от солнечных лучей до +50 - + 65 ° С. Жаростойкость суккулентов объясняется высокой вязкостью цитоплазмы и содержанием воды в клетках, пониженным уровнем обмена веществ

нежаростийки - мезофитные и водные растения. Мезофиты открытых мест произрастания могут выдерживать кратковременное повышение температуры до + 40 - + 47 ° С, а водоросли - до + 40 - + 42 ° С.

Растения, приспособленные к существованию в жарких условиях, в процессе филогенеза выработали защитные приспособления от перегрева:

Уменьшение поверхности растений;

Густое опушение листьев и стебля:

Развитие глянцевой поверхности листа;

Увеличение интенсивности транспирации;

Появление эфирных желез

Выделение кристаллов солей, преломляют солнечные лучи;

Накопления органических кислот, которые связывают аммиак и обезвреживают его,

Вертикальное и меридиональном расположение листьев и т. Способность переживать длительный жаркий и засушливый период является

комплексной свойством растений, объединенных в группу ксерофитов (более подробно эта группа будет рассмотрена в разделе "Влажность как экологический фактор"). При этом возможность выжить при высоких температурах будет тем больше, чем дольше оттягивается высыхания протоплазмы. Для этого растения выработали определенные приспособления:

гемиксерофиты устойчивые к засухе благодаря корневой системе, которая достигает грунтовых вод, интенсивным процессам транспирации и обмена веществ, они не выносят длительного обезвоживания;

евксерофиты имеют вязкую цитоплазму, замедленный метаболизм, они хорошо переносят обезвоживание и перегрев;

пойкилоксерофиты при обезвоживании приостанавливают метаболические процессы и впадают в анабиоз.

Анабиоз (от греч. Anabiosis - возвращение к жизни) - состояние организма, при котором жизненные процессы временно прекращаются или так замедляются, что исчезают и видимые проявления жизни.

Уменьшение поверхности транспирации достаточно эффективно достигается путем частичного или полного сброса листьев. Это типичная реакция различных древесных пород засушливых регионов на засуху. При этом потери воды составляют всего 1/300 - 1/3000 часть от испарения листьями при достаточном водоснабжения. Кустарники также при необходимости могут сбрасывать листья. Таким путем у некоторых видов транспируюча поверхность уменьшается в 3 - 5 раз. Части видов свойственно скручивания и сморщивания листьев, также приводит к снижению интенсивности транспирации. Например, в ковыля - на 60%.

Благодаря быстрому росту в глубину почвы или через трещины в скальном грунте корни проникают в горизонты, которые еще содержат влагу и за счет которых растения будут способны продержаться определенное время в засушливых условиях. Молодые растения древесных пород, проросшие из семян, развивают в засушливых регионах стержневые корни, длина которых в 10 раз превышает длину побегов. Злаковые растения в таких условиях образуют густую корневую систему подобную войлока, а их нитевидные корни проникают на метровую глубину, Соотношение между массой побегов и массой корней тем больше перемешивается в пользу корней, чем в более засушливых условиях развиваются растения.

В случае маломощных почв, когда для развития корневой системы недостаточно места, ситуация становится критической. На маломощных почвах засуха особенно опасна для растений с экстенсивной корневой системой (в первую очередь, древесных пород). Природные фитоценозы древесных пород в таких условиях довольно разреженные, а создание искусственных густых древостоев приводит к постепенному сжижения насаждения и его гибели. Это явление необходимо учитывать при проведении озеленения и создании защитных лесонасаждений.

Среди растений засушливых местообитаний выделяются суккуленты - многолетние растения с сочными, мясистыми листьями (агавы, алоэ) или стеблем (кактусовые, некоторые молочаи). Они имеют свойство накапливать воду в специальной водоносной паренхиме. Суккуленты растут, главным образом, в пустынях Центральной, Северной и Южной Америки и Южной Африки. В Украине в естественной флоре суккуленты практически не встречаются, за исключением представителей семьи толстолистного и как комнатные растения. Некоторые кактусы способны накапливать в стеблях 1 - 3 тонны воды и экономно использовать ее благодаря толстой кутикуле, малому числу устьиц и другим особенностям.

Особым приспособлением к засушливым условиям, вызванных высокой температурой, является терофитни формы.

Терофиты (от греч. Thcros - лето) - жизненная форма растений, переживают неблагоприятный период года в виде семян.

К терофиты относятся преимущественно однолетние травы средиземноморского происхождения, характерные для пустынь, полупустынь, южных степей Северного полушария. Такое приспособление довольно успешно может использоваться и для переживания низких зимних температур.

Часть бактерий, цианобактерий и лишайников, отдельные виды папоротников и мхов, единичные виды цветочных растений в течение месяцев и даже лет способны храниться в сухом состоянии, а после поступления воды восстанавливать свою жизнедеятельность. Вообще, анабиоз - это очень универсальное приспособление к неблагоприятным условиям, выработанное в процессе эволюции. Он является реакцией не только на

перегрев и на обезвоживание, но и на другие неблагоприятные условия существования.

Своеобразными приспособлениями к высоким температурам е пребывания в течение засушливого периода на определенных этапах цикла развития, или во временных, защищенных от перегрева экологических нишах. В первом случае речь идет о том, что часть растений переносит высокие температуры в состоянии анабиоза или как терофиты. Например, некоторые растения степей и пустынь переживают жаркое время года в стадии семян. Во втором случае растения во время периода высоких температур находятся в виде подземных органов (корневищ, клубней, луковиц и т.д.). К ним относятся ефемероиди- однолетники (веснянка весенняя, репейник яйцевидный) и эфемероиды-многолетники (тюльпаны, крокусы, мятлик бульбастий). Эти растения формируют надземную фитомассу течение короткого времени, когда достаточно влаги и отсутствуют высокие температуры.

Растения регулируют свою температуру путем рассеивания поглощенной энергии, таким образом они предотвращают перегрев и гибели. Главными механизмами терморегуляции у растений являются:

Вторичное излучение;

Испарения;

Конвекция.

На рассеяние энергии за счет вторичной радиации приходится примерно половина всей поглощенной энергии. Самостоятельное физиологическое значение транспирации заключается в том, что благодаря испарению происходит охлаждение тела растения, в результате взаимодействия листья растений с окружающим его воздухом (конвекции) также происходит саморегуляция температурного режима растений.

Но приспособительные свойства растений ограничены. Экстремально высокие или низкие температуры могут вызвать нарушения метаболических процессов на уровне растительных клеток и тканей. Кроме того, наблюдаются значительные нарушения физиологических функций, связанных с нарушением обмена нуклеиновых кислот и белков. У некоторых видов растений наблюдается усиленный распад белков и накопление в тканях растворимых форм азота. Например, гибель растений от высокой температуры может вызываться накоплением аммиака, как конечного продукта распада аминокислот. При температуре свыше + 50 ° С начинается денатурация белков цитоплазмы. При снижении температуры в растениях также проходят различные физиолого- биохимические изменения. Повреждения растений холодом сопровождается потерей тургора, изменением цвета листьев. Разрушение хлорофилла является следствием нарушения транспорта воды к транспируючы органов. При воздействии низких температур на теплолюбивые растения основной причиной повреждений является нарушение функциональной активности мембран, обусловлено переходом липидов бислоя с жидкостно-кристаллического состояния в гель. Это нарушает транспорт веществ через мембраны и приводит к общим изменениям метаболизма: процессы распада доминируют над процессами синтеза, повышается вязкость цитоплазмы и тому подобное. Особенно опасным является нарушение транспорта воды.

Таким образом, в природе, несмотря на многочисленные приспособления растений, наблюдаются экстремальные воздействия высоких или низких температур, а именно:

Отопления корневой шейки - отмирание камбия в местах соприкосновения растений с почвой;

Ожог коры ствола - отмирание камбия при внезапном освещении с южной стороны, в результате чего начинает отмирать кора;

Ожог листьев - случается в летнюю жару в южных широтах;

Усыхание растений под действием длительных высоких температур и отсутствия влаги;

Выдавливание растений из почвы на глинистых переувлажненных грунтах;

Обледенения цветков, завязи, листьев и побегов растений;

Вымерзания растений вследствие низких температур на фоне бесснежной зимы;

Морозобойные трещины стволов и ветвей деревьев.

Термические ожоги отдельных частей растения - это результат прямого действия солнечного облучения. Термические ожоги часто случаются при выращивании растений в закрытом грунте, когда солнечные лучи преломляется в каплях воды на листьях, как в линзах. Высокая температура вызывает денатурацию белков в растительных клетках. Так называемые весенние ожоги коры возникают, когда молодые клетки камбия, начинает развиваться под воздействием солнечного тепла, погибают от ночных заморозков. Это явление сопровождается почернением и отмиранием или отпадением коры.

Усыхание растений - это прямой результат критической потери или недостачи влаги. Засуха может быть атмосферным, почвенной и физиологической. В первом случае она обусловлена длительным бездождия, сухим воздухом. Почвенная засуха наступает при высушивании почвы, в результате чего поступления воды в корни растений замедляется или вовсе прекращается. Причиной физиологической засухи является неспособность растения обеспечить себя водой, например, при повреждении корневой системы. Особенно опасным для растения является сочетание атмосферной и почвенной засухи. Негативное влияние засухи усиливается, если высокая температура длится и ночью. Это быстро истощает растение.

Во выпиранием растений понимают обнажения и разрыв их подземной части, в результате периодического наступления замерзания и оттаивания почвы. При этом растения словно выталкиваются из почвы, разрывая корни. Непосредственной причиной данного явления является увеличение объема грунта, связанного с замерзанием воды в нем. Таким образом, подобное явление можно наблюдать только в переувлажненных условиях роста или при сильном увлажнении почвы осадками или поливом.

Ледовая корка образуется в период, когда оттепель сменяется морозами. Лед давит на ткани растений, приводит к их разрыву, или нарушения физиологических процессов. Вообще, из всех перечисленных причин гибели растений при действии низких температур Особого внимания заслуживает время, за которое температура снижается. Протоплазма клеток относительно устойчивая к низкой температуре, но при условии ее постепенного снижения. В то же время, клетка может погибнуть даже при незначительном, но резком похолодании. В умеренных и северных регионах, а также в условиях высокогорья часто наблюдается повреждение растений ранними осенними или поздними весенними заморозками. Чаще повреждаются теплолюбивые растения и те, что акклиматизируются в более суровых условиях. В первую очередь весенними заморозками повреждаются цветы и почки растений, а осенними - плоды. Корневая система растений от заморозков повреждается только в исключительных случаях.

Когда температура воздуха резко снижается ниже точки замерзания, стволы деревьев иногда трескаются или вдоль, или поперек, или променевидно. Это результат быстрого охлаждения и, связанной с ним, противодействия коры и внешней древесины, поскольку внутренняя часть древесины сохраняет несколько более высокую температуру. Морозобоины чаще встречаются у лиственных пород чем в хвойных. К наиболее чувствительных видов относятся - бук, дуб, орех, вяз, ясень, каштан.

Гибель растений в связи со снижением температуры воздуха не всегда связана с морозами. Многочисленные растения погибают или болеют и при температурах выше 0 ° С. Особенно чувствительны к снижению температуры термофильные сине-зеленые водоросли из горячих источников и бактерии, живущие при температуре +70 - + 80 ° С. Обычная комнатная температура для подобных термофилов очень низкой и они погибают. Очень чувствительны к холоду выходцы из тропической зоны, а также теплолюбивые растения, которые происходят из южных регионов, например, известны табак, огурцы, фасоль, рис, хлопчатник. Исследователи связывают это с нарушением водного баланса и обменом веществ в клетках, а также со специфическим влиянием данной температуры. Выпревания - это гибель, например, озимых культур под снегом, что связано с развитием на них снежного плесени - плесневого грибка. Под толстым слоем снега отмечаются высокие температуры, чем снаружи. Поэтому весной, при незамерзшей почве, в растения интенсифицируется дыхания и происходит потеря питательных веществ. При этом растения ослабляются и поражаются грибками.

Таким образом, влияние экстремальных температур обусловливает развитие различных приспособительных особенностей у растений. При изменении температуры за пределы нормы реакции возможна гибель отдельных частей и даже всего растительного организма.

Министерство общего и профессионального образования Р.Ф.

Липецкий государственный педагогический университет.

Естественно Географический Факультет.

Кафедра ботаники.

Курсовая работа

на тему:

“Приспособление растений к водному режиму”

Работу выполнила студентка

3-го курса ЭГО ЕГФ:

Гаганова В.В.

Работу приняла:

Соловьева Н.Ю.

Липецк 2001.

Введение. …………………………………………………………….3

Глава I . Характеристика основных групп растений по отношению к воде. …………….………………………………………...4

Глава II . Анатомо-морфологические приспособления

растений к водному режиму. ………………….……………………..10

Глава III . Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности. ………..16

Список литературы. ………………………………………………24

Введение.

Вода – важнейший экологический фактор для всего живого на земле. Для процессов обмена веществ со средой, составляющих основу жизни, необходимо участие воды в качестве растворителя и метаболита. Так у растений вода участвует в реакциях фотосинтеза, минеральные соли поступают в растения из почвы только в виде водных растворов. Вода – главная составная часть тела растений. Даже находясь в анабиозе, растения содержат воду. Особая роль воды наземных растений заключается в постоянном пополнении больших трат ее на испарение в связи с развитием большой фотосинтезирующей поверхности. Вода, обуславливая необходимое тургорное давление, определенным образом участвует и в поддержании формы наземных растений как организмов не имеющих опорного скелета. Также для большой группы растений, живущих в водоемах, морях и океанах, вода является непосредственной средой обитания.

Глава I. Характеристика основных групп растений по отношению к воде.

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают три основных экологических типа: гигрофиты, мезофиты и ксерофиты.

Растения, для которых вода не только необходимый экологический фактор, но непосредственная среда обитания, относятся к водным, называемым гидрофитами.

ГИГРОФИТЫ. Это растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. При довольно большом разнообразии местообитаний, особенностей водного режима и анатомо-морфологических черт всех гигрофитов объединяет отсутствие приспособлений, ограничивающих расход воды, и неспособность выносить даже незначительную ее потерю. Ярко выраженные гигрофиты – травянистые растения и эпифиты влажных тропических лесов, не выносящие сколько–нибудь заметного понижения влажности воздуха. Даже в разгар сезона дождей мелкие эпифитные папоротники на стволах деревьев теряют тургор и засыхают, если на них в течение 2-3 часов падают солнечные лучи. Черты гигрофитов имеют травянистые растения темнохвойных лесов (кислица, майник двулистный, двулепестник альпийский). К гигрофитам можно отнести и виды, растущие на открытых и хорошо освещенных местообитаниях, но в условиях избытка почвенной влаги – близ водоемов, в дельтах рек, в местах выхода грунтовых вод. В наших широтах примером могут служить прибрежные виды: калужница – Caltha palustris, плакун-трава – Lythrum salikaria, а в странах жаркого климата – папирус, болотные пальмы. Из культурных растений сюда можно отнести рис, культивируемый на полях, залитых водой.

КСЕРОФИТЫ. Это растения сухих местообитаний, способные переносить значительный недостаток влаги – почвенную и атмосферную засуху. Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. К этой группе принадлежат виды пустынь, сухих степей, саванн, колючих редколесий, сухих субтропиков. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции).

Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды при ее недостатке в почве и, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха и высоких температурах. Следовательно, для преодоления недостатка влаги возможны разные пути: увеличение ее поглощения и сокращение расхода, кроме того, способность переносить большие потери воды. Все это используется ксерофитами при адаптации к сухости, но у разных растений в неодинаковой степени, в связи с чем некоторые авторы различают два основных способа преодоления ксерофитами засухи: возможность противостоять иссушению тканей, или активное регулирование водного баланса, и способность выносить сильное иссушение.

В зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов (по Генкелю П.А.): эуксерофиты, гемиксерофиты, пойкилоксерофиты.

К группе ксерофитов относят и суккуленты – растения с сочными листьями или стеблями. Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями(кактусы, некоторые молочаи).

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев имеют своеобразный внешний облик, за что получили название склерофитов. Облик типичного склерофита легко представить на примере чертополоха – Carduus crispus и пустынных полыней, ковылей, саксаулов.

МЕЗОФИТЫ. Эта группа включает растения, произрастающие в средних условиях увлажнения. Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений.

Мезофиты – группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях. Они связаны переходами с другими экологическими типами растений по отношению к воде, так что четкую границу между ними провести очень трудно. Так, среди луговых мезофитов выделяются виды с повышенным влаголюбием, предпочитающие постоянно сырые или временно заливаемые участки (лисохвост луговой – Alopecurus pratensis, бекмания обыкновенная – Beckmannia eruciformis).

Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога – Impatiens nolitangere). С другой стороны в местообитаниях с переодическим или постоянным (небольшим) недостатком влаги много мезофитов с теми или иными ксероморфными признаками с повышенной физиологической устойчивостью к засухе. Эта группа переходная между мезофитами ксерофитами, - ксеромезофиты. Примером могут служить многие виды северных степей, сухих сосновых боров, песчаных местообитаний: клевер-белоголовка – Trifolium montanum, подмаренник желтый – Galium verum и другие.

Особое место среди мезофитов занимают степные и пустынные весенние эфемеры и эфемероиды. К этой группе принадлежат растения, ранней весной покрывающие степи и пустыни разноцветным цветущим ковром (многолетники – тюльпаны, гусиные луки; однолетники – маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды – в виде покоящихся луковиц, клубней, корневищ. Кроме весенних существуют и осенние эфемероиды, произрастающие в районах с климатическим ритмом средиземноморского типа. Сюда относятся виды родов Crocus, Scilla и другие.

По многим особенностям структуры и физиологии близки к ксерофитам растения, которые по тем или иным причинам испытывают недостаток влаги, сопряженный с действием низких температур. Иногда такие виды в качестве особого подразделения включают в группу ксерофитов, иногда выделяют в самостоятельные экологические типы – психрофиты и криофиты.

Психрофиты – растения влажных и холодных почв в холодных местообитаниях высокогорий и северных широт. Несмотря на достаточное увлажнение почвы, они часто испытывают недостаток влаги (или из-за физиологической сухости, вызванной низкими температурами, или в связи с преобладанием в почве недоступной влаги, как, например, на торфянистых почвах). Среди психрофитов есть травянистые растения (например злаки северных лугов: белоус – Nardus strikta; высокогорные кавказские злаки: овсяница пестрая –Festuka varia), высокогорные, болотные и тундровые кустарники и кустарнички, как вечнозеленые (вереск – Calluna vulgaris), так и с опадающей листвой (карликовые ивы – Salix polaris, S. herbacea).К психрофитам относятся и хвойные древесные породы умеренных и северных широт.

Криофиты в экологическом отношении очень близки к психрофитам и связаны с ними переходными формами. Это растения сухих и холодных местообитаний – сухих участков тундр, скал, осыпей. Обычно они рассматриваются и характеризуются вместе с психрофитами, поскольку у них много сходных морфологических и физиологических черт. Но среди криофитов есть и весьма своеобразные формы – это растения-подушки высокогорных холодных пустынь.

ГИДРОФИТЫ. Это водные растения. По образу жизни и строению среди них можно выделить погруженные растения и растения с плавающими листьями. Погруженные растения подразделяют на укореняющиеся в донном грунте и взвешенные в толще воды. Из высших растений к первым принадлежат телорез – Stratiotes aloides, шильник водяной – Subularia aquatika. В эту же группу входят водоросли, прикрепленные к грунту. Из растений, взвешенных в толще воды, можно назвать роголистник погруженный-Ceratophyllum demersum, пузырчатку обыкновенную – Utrikularia vulgaris, а также многочисленные виды планктонных водорослей.

Растения с плавающими листьями используют частично водную, частично воздушную среду. Из них укореняются в грунте кувшинки из рода Nymphaea, кубышки из рода Nuphar, рдесты, орех водяной – Trapa natans.

Многие виды наряду с плавающими на поверхности воды листьями имеют и подводные. Плавают на поверхности воды, не укореняясь, ряски, водокрас.

К настоящим водным растениям очень близко примыкает и обычно вместе с ними рассматривается группа гелофитов или амфибий – земноводных растений. Это виды береговых и прибрежных местообитаний с избыточным или переменным увлажнением. Они могут расти как в воздушной среде, так и частично погруженными в воду, могут выносить и полное временное заливание. Как в природе нет резкой границы между водными и наземными местообитаниями для растений, так и группа гелофитов связана незаметными переходами, с одной стороны, с настоящими гидрофитами, с другой – с наземными гигрофитами и гигромезофитами. Примеры гелофитов – растений прибрежной полосы пресноводных водоемов и рек: стрелолист – Sagittaria sagittifolia, ежеголовка – Sparganium ramosum.

ГЛАВА II. Анатомо-морфологические приспособления растений к водному режиму.

Растения, приуроченные к местообитаниям с разными условиями увлажнения, выработали соответствующие приспособления к водному режиму.

Характерные структурные черты гигрофитов – тонкие нежные листовые пластинки с небольшим числом устьиц, не имеющие толстой кутикулы, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей ткани, тонкие слаборазветвленные корни.

Для ксерофитов большое значение имеют разнообразные структурные приспособления к условиям недостатка влаги.

Корневые системы обычно сильно развиты, что помогает растениям увеличить поглощение почвенной влаги. По общей массе корневые системы ксерофитов нередко превышают надземные части, иногда весьма значительно. Так, у многих травянистых и кустарниковых видов среднеазиатских пустынь подземная масса больше надземной в 9-10 раз, а у кесрофитов памирских высокогорных холодных пустынь – в300-400 раз. Корневые системы ксерофитов часто бывают экстенсивного типа, то есть растения имеют длинные корни, распространяющиеся в большом объеме почвы, но сравнительно мало разветвленные. Проникновение таких корней на большую глубину позволяет ксерофитам использовать влагу глубоких почвенных горизонтов, а в отдельных случаях – и грунтовых вод.

У других видов корневые системы интенсивного типа: они охватывают относительно небольшой объем почвы, но благодаря очень густому ветвлению максимально используют почвенную влагу. Корни ряда ксерофильных видов имеют специальные приспособления для запасания влаги. Надземные органы ксерофитов также отличаются своеобразными (так называемыми ксероморфными чертами), которые носят отпечаток трудных условий водоснабжения. У них сильно развита водопроводящая система, что хорошо заметно по густоте сети жилок в листьях, подводящих воду к тканям. Эта черта облегчает ксерофитам пополнение запасов влаги, расходуемой на транспирацию.

1. Общее сокращение транспирирующей поверхности. Многие ксерофиты имеют мелкие, узкие, сильно редуцированные листовые пластинки. В особо засушливых пустынных местообитаниях листья некоторых древесных и кустарниковых пород редуцированы до едва заметных чешуек. У таких видов фотосинтез осуществляют зеленые ветви.

2. Уменьшение листовой поверхности в наиболее жаркие и сухие периоды вегетационного сезона. Для многих кустарников среднеазиатских, североафриканских и других пустынь, а так же для некоторых видов сухих субтропиков средиземноморья характерен сезонный деформизм листьев: ранней весной при еще благоприятном водном режиме образуются относительно крупные листья, которые летом, при наступлении жары и сухости, сменяются мелкими листьями более ксероморфного строения с меньшей интенсивностью транспирации.

3. Защита листьев от больших потерь влаги на транспирацию. Она достигается благодаря развитию мощных покровных тканей – толстостенного, иногда многослойного эпидермиса, часто несущего различные выросты и волоски, которые образуют густое “войлочное” опушение поверхности листа. У других видов поверхность покрыта водонепроницаемым слоем толстой кутикулы или воскового налета. Развитие защитных покровов на листьях причина того, что степной травостой имеет тусклые, седоватые оттенки, резко отличающиеся от яркой зелени лугов.

Устьица у ксерофитов обычно защищены от чрезмерной потери влаги, например, расположены в специальных углублениях в ткани листа, иногда снабженных волосками и прочими дополнительными защитными устройствами. У ковылей и других степных злаков существует интересный механизм защиты устьиц в самые жаркие и сухие часы дня: при больших потерях воды крупные тонкостенные водоносные клетки эпидермиса теряют тургор, и лист свертывается в трубку; так устьица оказываются изолированными от окружающего сухого воздуха внутри замкнутой полости, где благодаря транспирации создается повышенная влажность. Во влажную погоду клетки эпидермиса восстанавливают тургор, и листовая пластинка вновь развертывается.

4. Усиленное развитие механической ткани.

Клетки тканей листьев у ксерофитов отличаются мелкими размерами и весьма плотной упаковкой, то есть малым развитием межклетников, благодаря чему сильно сокращается внутренняя испаряющая поверхность листа. Поскольку ксерофиты обычно обитают на открытых, хорошо освещенных местообитаниях, многие черты ксероморфной структуры листа – это одновременно и черты световой структуры. Так у многих видов листья имеют мощную иногда многорядную палисадную паренхиму, часто расположенную с обеих сторон.

Основные морфолого-анотомические черты мезофитов – средние между чертами гигрофитов и ксерофитов. Мезофиты имеют умеренно развитые корневые системы как экстенсивного, так и интенсивного типа, со всеми переходами между ними. Для листа характерна дифференцировка тканей на более или менее плотную палисадную паренхиму и рыхлую губчатую паренхиму с системой межклетников. Сеть жилок сравнительно негустая. Покровные ткани могут иметь отдельные ксероморфные черты, но не столь ярко выраженные, как у ксерофитов.

Психрофиты имеют ярко выраженную ксероморфную структуру листа. Так, психрофильные злаки узколистны, имеют хорошо развитую проводящую и механическую ткани; некоторые из них способны к свертыванию листовой пластинки в трубку, напоминая степные ксерофиты. Вечнозеленые кустарнички имеют плотные кожистые листья, иногда с весьма мощной кутикулой, плотной палисадной паренхимой. Нижняя сторона, несущая устьица, часто опушена или покрыта восковым налетом. Вместе с тем в структуре листа ясно заметны и некоторые гигроморфные черты, главным образом, крупные размеры клеток и развитие больших межклетников в губчатой ткани.

Анатомо-морфологические черты гидрофитов существенно отличают их от наземных растений. Заметна редукция механических тканей. Столь же сильно редуцированна и проводящая система. Если у сухопутных мезофитов длина жилок на 1 кв.см. листа составляет около100 мм и более, а у ксерофитов доходит до300, то у водных и прибрежных растений она в несколько раз меньше. Вот несколько примеров (по Гесснеру Ф., 1959):


У некоторых погруженных растений, не прикрепленных к грунту, корни полностью редуцированны, другие корни сохранили, но отдельно плавающие части растений могут обходиться и без них. Корни укрепляющихся гидрофитов слабоветвистые, без корневых волосков. Вместе с тем ряд видов имеет толстые и прочные корневища, которые играют роль якоря, хранилища запасных веществ и органа вегетативного размножения.

Листья погруженных гидрофитов очень тонки и нежны, имеют упрощенное строение мезофилла без заметной дифференциации на палисадную и губчатую паренхиму. Подводные листья без устьиц. В отдельных местах находятся группы клеток эпидермиса с утонченными стенками. Считается, что они играют большую роль в поглощении воды и растворенных минеральных солей.

У растений лишь частично погруженных в воду, хорошо выражена гетерофиллия - различие строения надводных и подводных листьев на одной и той же особи. Первые имеют черты, обычные для листьев наземных растений, вторые – очень тонкие или рассеченные листовые пластинки. Гетерофиллия отмечена у водного лютика – Ranunculus diversifolius, кувшинок и кубышек, стрелолиста и других видов. Интересный пример – поручейник, на стебле которого можно видеть несколько форм листьев, представляющих все переходы от типично наземных до водных.

Глава III.Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

Наряду с морфологическими особенностями у растений, приуроченных к местам с разными условиями увлажненности, выработались и физиологические.

Способность гигрофитов к регуляции водного режима ограничена: устьица большей частью широко открыты, так что транспирация мало отличается от физического испарения. Благодаря беспрепятственному потоку воды и отсутствию защитных приспособлений интенсивность транспирации очень высока: у световых гигрофитов в дневное время листья могут терять за час количество воды, в 4-5 раз превышающее массу листа. Высокая оводненность тканей гигрофитов поддерживается в основном за счет постоянного притока влаги из окружающей среды.

Другие характерные физиологические черты гигрофитов, обусловленные легкой доступностью влаги, - низкое осмотическое давление клеточного сока, незначительная водоудерживающая способность, приводящая к быстрой потере запасов воды.особенно показательны для гигрофитов небольшие величины сублетального водного дефицита: так, для кислицы и майника потеря 15%-20% запаса воды уже необратима и ведет к гибели. В некоторых случаях у растений сильно увлажненных местообитаний возникает необходимость удаления избытка влаги. Обычно, это бывает, когда почва хорошо прогрета и корни активно всасывают воду, а транспирация отсутствует (например, утром или при тумане, когда влажность воздуха 100%). Избыточная влага удаляется путем гуттации – выделение воды через специальные выделительные клетки, расположенные по краю или на острие листа.

Ксерофиты обладают рядом разнообразных физиологических адаптаций, позволяющих им успешно выдерживать недостаток влаги.

У ксерофитов обычно повышено осмотическое давление клеточного сока, позволяющее всасывать воду даже при больших водоотнимающих силах почвы, то есть использовать не только легкодоступную, но и труднодоступную почвенную влагу. Оно измеряется тысячами кПа, а у некоторых пустынных кустарников зарегистрированы цифры, достигающие 10000-30000 кПа.

С давних пор пристальное внимание привлекала проблема расхода воды ксерофитами на транспирацию. Казалось бы, многочисленные анатомические приспособления, достаточно надежно защищающие наземные части ксерофитов от сильного испарения, должны способствовать значительному снижению транспирации. Однако выяснилось, что в действительности это не так. При достаточном водоснабжении большинство ксерофитов имеют довольно высокую транспирацию, но при наступлении засушливых условий, они сильно сокращают ее. При этом играет роль и закрывание устьиц, и сильное обезвоживание листа при начинающемся подвядании. Несомненно, анатомо-морфологические приспособления имеют определенное значение, но основную роль в засухоустойчивости ксерофитов в настоящее время отводят физиологическим механизмам.

К числу этих механизмов принадлежит высокая водоудерживающая способность тканей и клеток, обусловленная рядом физиологических и биохимических особенностей.

Большое значение для выживания ксерофитов при резком недостатке влаги имеет их способность переносить глубокое обезвоживание тканей без потери жизнеспособности и способности восстановления нормального содержания воды в растении при возобновлении благоприятных условий. Ксерофиты способны потерять до 75% всего водного запаса и, тем не менее, остаться живыми. Ярким примером в этом отношении служат пустынные растения, которые летом высыхают до состояния, близкого к воздушно-сухому, и впадают в анабиоз, но после дождей возобновляют рост и развитие.

Еще одна система адаптаций, обеспечивающих выживание ксерофитов в аридных условиях, - выработка сезонных ритмов, дающих возможность растениям использовать для вегетации наиболее благоприятные периоды года и резко сократить жизнедеятельность во время засухи. Так, в областях со средиземноморским климатом с резко выраженным летним сухим периодом многие ксерофильные виды имеют “двухтактный” ритм сезонного развития: весенняя вегетация сменяется летним покоем, во время которого растения сбрасывают листву и снижают интенсивность физиологических процессов; в период осенних дождей вегетация возобновляется, и затем уже следует зимний покой. Сходное явление наблюдается и у растений сухих степей в середине и конце лета: потеря части листовой поверхности, приостановка развития, сильное обезвоживание тканей и т.д. Такое состояние, получившее название полупокоя, длится вплоть до осенних дождей, после которых у степных ксерофитов начинают отрастать листья.

Физиологические адаптации суккулентов столь своеобразны, что их необходимо рассмотреть отдельно.

Основной способ преодоления засушливых условий у суккулентов – накопление больших запасов воды в тканях и крайне экономное ее расходование. В условиях жаркого и сухого климата весь водный запас мог бы быть быстро растрачен, но растения имеют защитные приспособления, направленные к сокращению транспирации. Одно из них – своеобразная форма надземных частей суккулентов. В дополнение к этому у многих суккулентов поверхность защищена восковым налетом опушением, хотя есть и суккуленты с тонким не защищенным эпидермисом. Устьица очень немногочисленны, часто погружены в ткань листа или стебля. Днем устьица обычно закрыты, и потеря воды идет в основном через покровные ткани.

Транспирация у суккулентов чрезвычайно мала. Ее трудно уловить за короткий период и приходится определять расход воды не за час, а за сутки или за неделю. Водоудерживающая способность тканей суккулентов значительно выше, чем у других растений экологических групп, благодаря содержанию в клетках гидрофильных веществ. Поэтому и без доступа влаги суккуленты расходуют водный запас очень медленно и долго сохраняют жизнеспособность даже в гербарии.

Ограничения, обусловленные особенностями водного режима суккулентов, создают и другие трудности для жизни этих растений в аридных условиях. Слабая транспирация сводит к минимуму возможность терморегуляции, с чем связано сильное нагревание массивных надземных органов суккулентов. Затруднения создаются и для фотосинтеза, поскольку днем устьица обычно закрыты, а открываются ночью, следовательно, доступ углекислоты и света не совпадают во времени. Поэтому у суккулентов выработался особый путь фотосинтеза, при котором в качестве источника углекислоты, частично используются продукты дыхания. Иными словами, в крайних условиях растения частично используют принцип замкнутой системы с реутилизацией отходов метаболизма.

В силу всех этих ограничений интенсивность фотосинтеза суккулентов невелика, рост и накопление массы идут очень медленно, вследствие чего они не отличаются высокой биологической продуктивностью и не образуют сомкнутых растительных сообществ.

Физиологические показатели водного режима мезофитов подтверждают их промежуточную позицию: для них характерны умеренные величины осмотического давления, содержания воды в листьях, предельного водного дефицита. Что касается транспирации, то ее величина в большей степени зависит от условий освещенности и других элементов микро климата.

Один и тот же мезофильный вид, попадая в разные по водоснабжению условия, обнаруживает известную пластичность, приобретая в сухих условиях более ксероморфные, а во влажных более гигроморфные черты.

Пластичность листьев проявляется не только в разных местообитаниях, но даже у одной и той же особи. Например, у деревьев на опушке леса листья на стороне, обращенной в сторону леса, имеют более мезофильный и теневой характер по сравнению с несколько ксероморфными листьями внешней стороны дерева (см. табл. ниже). Листья разных высотных ярусов одних и тех же растений находятся в неодинаковых условиях водоснабжения, так как поступление воды в верхние части связано с преодолением большого сопротивления. К тому же у деревьев верхние листья обычно находятся в условиях иного микроклимата.

Различие анатомо-физиологических показателей листьев на разных сторонах кроны дерева, растущего на опушке леса.

I – сторона, обращенная к лесу, II – сторона, обращенная к поляне

Водная среда существенно отличается от воздушной, поэтому у водных растений существует ряд своеобразных физиологических адаптивных черт. Интенсивность света в воде сильно ослаблена, поскольку часть падающей радиации отражается от поверхности воды, другая – поглощается ее толщей. В связи с ослаблением света фотосинтез у погруженных растений сильно снижается с увеличением глубины. Считают, сто выживанию глубоководного фитопланктона в зонах, где освещенность ниже точки компенсации, способствуют его периодические вертикальные перемещения в верхние зоны, где идет интенсивный фотосинтез и пополнение запасов органических веществ.

В воде кроме недостатка света растения могут испытывать и другое затруднение, существенное для фотосинтеза, - недостаток доступной СО 2 . Углекислота поступает в воду в результате растворения СО 2 , содержащегося в воздухе, дыхания водных организмов, разложения органических остатков и высвобождения из карбонатов. При интенсивном фотосинтезе растений идет усиленное потребление СО 2 , в связи с чем легко возникает ее дефицит.
На увеличение содержания СО 2 в воде гидрофиты реагируют заметным повышением фотосинтеза.

У погруженных растений транспирации нет, значит, нет и “верхнего двигателя”, поддерживающего ток воды в растении. Однако этот ток, доставляющий к тканям питательные вещества, существует, при чем с явной суточной периодичностью: днем больше, ночью отсутствует. Активная роль в его поддержании принадлежит корневому давлению и деятельности специальных клеток, выделяющих воду, - водяных устьиц.

Плавающие или торчащие над водой листья обычно имеют сильную транспирацию, хотя и расположены в слое воздуха, который непосредственно граничит с водой и имеет повышенную влажность. Устьица широко открыты и закрываются полностью только в ночное время.

Столь же велика транспирация у прибрежных растений, при чем у них значительное количество воды расходуется не только листьями, но и стеблями.

Осмотическое давление у водных и прибрежных растений очень низкое, так как им не приходится преодолевать водоудерживающую силу почвы при поглощении воды.

Примеры осмотического давления (в кПа) у водных растений и гелофитов (по Гесснеру Ф.,1959)

Список литературы.

1. Ботаника с основами экологии: Учеб. Пособие для студентов пед. ин-тов /Л.В. Кудряшов и др. – М.: Просвещение,1979

2. Горышина Т.К. Экология растений. – М.: Высшая школа,1979

3. Гусев Н.А. Некоторые закономерности водного режима растений. – М.: Изд-во АН СССР, 1959.

4. Двораковский М.С. Экология растений. –

М.: Просвещение 1964

5. Жданов В.С. Аквариумные растения. / Под. ред. Коровина. -

Водный режим у растений

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой.

Экологические группы растений по отношению к температуре

В защитных приспособлениях растений к высоким температурам использованы разные пути адаптации.
...угнетения (затруднение всасывания воды, расстройства водного режима и т. д.), которые могли бы быть вызваны «физиологической сухостью» холодных почв.




Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: