Ιδιότητες ορθογώνιας πυραμίδας. Πυραμίδα

  • αποθεμα- το ύψος της πλευρικής όψης μιας κανονικής πυραμίδας, η οποία αντλείται από την κορυφή της (επιπλέον, το απόθεμα είναι το μήκος της κάθετου, η οποία χαμηλώνει από το μέσο του κανονικού πολυγώνου σε μία από τις πλευρές του).
  • πλαϊνά πρόσωπα (ASB, BSC, CSD, DSA) - τρίγωνα που συναντώνται στην κορυφή.
  • πλευρικές νευρώσεις ( ΟΠΩΣ ΚΑΙ , B.S. , C.S. , Δ.Σ. ) — κοινές πλευρές των πλευρικών όψεων·
  • κορυφή της πυραμίδας (t. S) - ένα σημείο που συνδέει τις πλευρικές νευρώσεις και το οποίο δεν βρίσκεται στο επίπεδο της βάσης.
  • ύψος ( ΕΤΣΙ ) - ένα κάθετο τμήμα που τραβιέται μέσω της κορυφής της πυραμίδας στο επίπεδο της βάσης της (τα άκρα ενός τέτοιου τμήματος θα είναι η κορυφή της πυραμίδας και η βάση της κάθετης).
  • διαγώνιο τμήμα της πυραμίδας- ένα τμήμα της πυραμίδας που διέρχεται από την κορυφή και τη διαγώνιο της βάσης.
  • βάση (Α Β Γ Δ) - ένα πολύγωνο που δεν ανήκει στην κορυφή της πυραμίδας.

Ιδιότητες της πυραμίδας.

1. Όταν όλες οι πλευρικές άκρες έχουν το ίδιο μέγεθος, τότε:

  • Είναι εύκολο να περιγράψουμε έναν κύκλο κοντά στη βάση της πυραμίδας και η κορυφή της πυραμίδας θα προβάλλεται στο κέντρο αυτού του κύκλου.
  • οι πλευρικές νευρώσεις σχηματίζουν ίσες γωνίες με το επίπεδο της βάσης.
  • Επιπλέον, ισχύει και το αντίθετο, δηλ. όταν οι πλευρικές πλευρές σχηματίζουν ίσες γωνίες με το επίπεδο της βάσης ή όταν ένας κύκλος μπορεί να περιγραφεί γύρω από τη βάση της πυραμίδας και η κορυφή της πυραμίδας θα προβληθεί στο κέντρο αυτού του κύκλου, σημαίνει ότι όλες οι πλευρικές ακμές της πυραμίδας έχουν το ίδιο μέγεθος.

2. Όταν οι πλευρικές όψεις έχουν γωνία κλίσης ως προς το επίπεδο της βάσης της ίδιας τιμής, τότε:

  • Είναι εύκολο να περιγράψουμε έναν κύκλο κοντά στη βάση της πυραμίδας και η κορυφή της πυραμίδας θα προβάλλεται στο κέντρο αυτού του κύκλου.
  • τα ύψη των πλευρικών όψεων είναι ίσου μήκους.
  • το εμβαδόν της πλευρικής επιφάνειας είναι ίσο με το ½ του γινόμενου της περιμέτρου της βάσης και του ύψους της πλευρικής όψης.

3. Μια σφαίρα μπορεί να περιγραφεί γύρω από μια πυραμίδα αν στη βάση της πυραμίδας υπάρχει ένα πολύγωνο γύρω από το οποίο μπορεί να περιγραφεί ένας κύκλος (απαραίτητη και επαρκής συνθήκη). Το κέντρο της σφαίρας θα είναι το σημείο τομής των επιπέδων που διέρχονται από τα μέσα των κάθετων σε αυτά άκρων της πυραμίδας. Από αυτό το θεώρημα συμπεραίνουμε ότι τόσο γύρω από οποιοδήποτε τριγωνικό όσο και γύρω από οποιοδήποτε κανονική πυραμίδαμπορεί να περιγράψει τη σφαίρα.

4. Μια σφαίρα μπορεί να εγγραφεί σε μια πυραμίδα αν τα επίπεδα διχοτόμων των εσωτερικών διεδρικών γωνιών της πυραμίδας τέμνονται στο 1ο σημείο (απαραίτητη και επαρκής συνθήκη). Αυτό το σημείο θα γίνει το κέντρο της σφαίρας.

Η πιο απλή πυραμίδα.

Με βάση τον αριθμό των γωνιών, η βάση της πυραμίδας χωρίζεται σε τριγωνική, τετραγωνική κ.ο.κ.

Θα υπάρχει μια πυραμίδα τριγωνικός, τετράπλευρος, και ούτω καθεξής, όταν η βάση της πυραμίδας είναι ένα τρίγωνο, ένα τετράγωνο, και ούτω καθεξής. Μια τριγωνική πυραμίδα είναι ένα τετράεδρο - ένα τετράεδρο. Τετραγωνικό - πενταγωνικό και ούτω καθεξής.

Πρώτο επίπεδο

Πυραμίδα. Visual Guide (2019)

Τι είναι μια πυραμίδα;

Πώς της φαίνεται;

Βλέπετε: στο κάτω μέρος της πυραμίδας (λένε " στη βάση") κάποιο πολύγωνο, και όλες οι κορυφές αυτού του πολυγώνου συνδέονται με κάποιο σημείο του χώρου (αυτό το σημείο ονομάζεται " κορυφή»).

Όλη αυτή η δομή έχει ακόμα πλαϊνά πρόσωπα, πλαϊνά πλευράΚαι νευρώσεις βάσης. Για άλλη μια φορά, ας σχεδιάσουμε μια πυραμίδα μαζί με όλα αυτά τα ονόματα:

Μερικές πυραμίδες μπορεί να φαίνονται πολύ περίεργες, αλλά εξακολουθούν να είναι πυραμίδες.

Εδώ, για παράδειγμα, είναι εντελώς "λοξό" πυραμίδα.

Και λίγα περισσότερα για τα ονόματα: αν υπάρχει ένα τρίγωνο στη βάση της πυραμίδας, τότε η πυραμίδα ονομάζεται τριγωνική, αν είναι τετράγωνη, τότε τετράγωνη, και αν είναι εκατόγωνο, τότε... μαντέψτε μόνοι σας .

Ταυτόχρονα, το σημείο που έπεσε ύψος, που ονομάζεται βάση ύψους. Σημειώστε ότι στις «στραβές» πυραμίδες ύψοςμπορεί ακόμη και να καταλήξει έξω από την πυραμίδα. Σαν αυτό:

Και δεν υπάρχει τίποτα κακό σε αυτό. Μοιάζει με αμβλύ τρίγωνο.

Σωστή πυραμίδα.

Πολλές περίπλοκες λέξεις; Ας αποκρυπτογραφήσουμε: "Στη βάση - σωστό" - αυτό είναι κατανοητό. Τώρα ας θυμηθούμε ότι ένα κανονικό πολύγωνο έχει ένα κέντρο - ένα σημείο που είναι το κέντρο του και , και .

Λοιπόν, οι λέξεις "η κορυφή προβάλλεται στο κέντρο της βάσης" σημαίνουν ότι η βάση του ύψους πέφτει ακριβώς στο κέντρο της βάσης. Δείτε πόσο απαλό και χαριτωμένο φαίνεται κανονική πυραμίδα.

Εξαγώνιος: στη βάση υπάρχει ένα κανονικό εξάγωνο, η κορυφή προβάλλεται στο κέντρο της βάσης.

Τετράπλευρος: η βάση είναι τετράγωνο, η κορυφή προβάλλεται στο σημείο τομής των διαγωνίων αυτού του τετραγώνου.

Τριγωνικός: στη βάση υπάρχει κανονικό τρίγωνο, η κορυφή προβάλλεται στο σημείο τομής των υψών (είναι και διάμεσοι και διχοτόμοι) αυτού του τριγώνου.

Πολύ σημαντικές ιδιότητες μιας κανονικής πυραμίδας:

Στη δεξιά πυραμίδα

  • όλες οι πλευρικές άκρες είναι ίσες.
  • όλες οι πλευρικές όψεις είναι ισοσκελές τρίγωνα και όλα αυτά τα τρίγωνα είναι ίσα.

Όγκος της πυραμίδας

Ο κύριος τύπος για τον όγκο μιας πυραμίδας:

Από πού ακριβώς προήλθε; Αυτό δεν είναι τόσο απλό και στην αρχή πρέπει απλώς να θυμάστε ότι μια πυραμίδα και ένας κώνος έχουν όγκο στον τύπο, αλλά ένας κύλινδρος δεν έχει.

Τώρα ας υπολογίσουμε τον όγκο των πιο δημοφιλών πυραμίδων.

Αφήστε την πλευρά της βάσης να είναι ίση και η πλαϊνή άκρη ίση. Πρέπει να βρούμε και.

Αυτό είναι το εμβαδόν ενός κανονικού τριγώνου.

Ας θυμηθούμε πώς να αναζητήσουμε αυτήν την περιοχή. Χρησιμοποιούμε τον τύπο της περιοχής:

Για εμάς, το " " είναι αυτό, και το " " είναι επίσης αυτό, ε.

Τώρα ας το βρούμε.

Σύμφωνα με το Πυθαγόρειο θεώρημα για

Ποιά είναι η διαφορά; Αυτό είναι το circumradius στο γιατί πυραμίδασωστόςκαι, επομένως, το κέντρο.

Δεδομένου ότι - το σημείο τομής των διάμεσων επίσης.

(Πυθαγόρειο θεώρημα για)

Ας το αντικαταστήσουμε στον τύπο για.

Και ας αντικαταστήσουμε τα πάντα στον τύπο όγκου:

Προσοχή:εάν έχετε ένα κανονικό τετράεδρο (δηλαδή), τότε ο τύπος προκύπτει ως εξής:

Αφήστε την πλευρά της βάσης να είναι ίση και η πλαϊνή άκρη ίση.

Δεν χρειάζεται να κοιτάξετε εδώ. Μετά από όλα, η βάση είναι ένα τετράγωνο, και ως εκ τούτου.

Θα το βρούμε. Σύμφωνα με το Πυθαγόρειο θεώρημα για

Ξέρουμε; Σχεδόν. Κοίτα:

(το είδαμε κοιτάζοντάς το).

Αντικαταστήστε στον τύπο για:

Και τώρα αντικαθιστούμε τον τύπο όγκου.

Αφήστε την πλευρά της βάσης να είναι ίση και η πλαϊνή άκρη.

Πως να βρεις; Κοιτάξτε, ένα εξάγωνο αποτελείται από ακριβώς έξι ίδια κανονικά τρίγωνα. Έχουμε ήδη αναζητήσει το εμβαδόν ενός κανονικού τριγώνου κατά τον υπολογισμό του όγκου μιας κανονικής τριγωνικής πυραμίδας εδώ χρησιμοποιούμε τον τύπο που βρήκαμε.

Τώρα ας το βρούμε (το).

Σύμφωνα με το Πυθαγόρειο θεώρημα για

Τι σημασία έχει όμως; Είναι απλό γιατί (και όλοι οι άλλοι επίσης) έχουν δίκιο.

Ας αντικαταστήσουμε:

\displaystyle V=\frac(\sqrt(3))(2)(a)^(2))\sqrt(((b)^(2))-((a)^(2)))

ΠΥΡΑΜΙΔΑ. ΣΥΝΤΟΜΗ ΣΧΕΤΙΚΑ ΜΕ ΤΑ ΚΥΡΙΑ ΠΡΑΓΜΑΤΑ

Μια πυραμίδα είναι ένα πολύεδρο που αποτελείται από οποιοδήποτε επίπεδο πολύγωνο (), ένα σημείο που δεν βρίσκεται στο επίπεδο της βάσης (κορυφή της πυραμίδας) και όλα τα τμήματα που συνδέουν την κορυφή της πυραμίδας με σημεία της βάσης (πλευρικές ακμές).

Μια κάθετη έπεσε από την κορυφή της πυραμίδας στο επίπεδο της βάσης.

Σωστή πυραμίδα- μια πυραμίδα στην οποία ένα κανονικό πολύγωνο βρίσκεται στη βάση και η κορυφή της πυραμίδας προβάλλεται στο κέντρο της βάσης.

Ιδιότητα κανονικής πυραμίδας:

  • Σε μια κανονική πυραμίδα, όλες οι πλευρικές ακμές είναι ίσες.
  • Όλες οι πλευρικές όψεις είναι ισοσκελές τρίγωνα και όλα αυτά τα τρίγωνα είναι ίσα.

Πυραμίδα. Κόλουρη πυραμίδα

Πυραμίδαείναι ένα πολύεδρο, του οποίου μια όψη είναι πολύγωνο ( βάση ), και όλες οι άλλες όψεις είναι τρίγωνα με κοινή κορυφή ( πλαϊνά πρόσωπα ) (Εικ. 15). Η πυραμίδα ονομάζεται σωστός , αν η βάση της είναι κανονικό πολύγωνο και η κορυφή της πυραμίδας προβάλλεται στο κέντρο της βάσης (Εικ. 16). Μια τριγωνική πυραμίδα με όλες τις άκρες ίσες ονομάζεται τετράεδρο .



Πλευρική πλευράμιας πυραμίδας είναι η πλευρά της πλευρικής όψης που δεν ανήκει στη βάση Υψος πυραμίδα είναι η απόσταση από την κορυφή της μέχρι το επίπεδο βάσης. Όλες οι πλευρικές ακμές μιας κανονικής πυραμίδας είναι ίσες μεταξύ τους, όλες οι πλευρικές όψεις είναι ίσα ισοσκελές τρίγωνα. Το ύψος της πλευρικής όψης μιας κανονικής πυραμίδας που αντλείται από την κορυφή ονομάζεται αποθεμα . Διαγώνιο τμήμα ονομάζεται τομή μιας πυραμίδας από ένα επίπεδο που διέρχεται από δύο πλευρικές ακμές που δεν ανήκουν στην ίδια όψη.

Πλάγια επιφάνειαπυραμίδα είναι το άθροισμα των εμβαδών όλων των πλευρικών όψεων. Συνολική επιφάνεια ονομάζεται το άθροισμα των εμβαδών όλων των πλευρικών όψεων και της βάσης.

Θεωρήματα

1. Εάν σε μια πυραμίδα όλες οι πλευρικές ακμές έχουν την ίδια κλίση προς το επίπεδο της βάσης, τότε η κορυφή της πυραμίδας προβάλλεται στο κέντρο του κύκλου που περιβάλλεται κοντά στη βάση.

2. Εάν όλες οι πλευρικές ακμές μιας πυραμίδας έχουν ίσα μήκη, τότε η κορυφή της πυραμίδας προβάλλεται στο κέντρο ενός κύκλου που περιβάλλεται κοντά στη βάση.

3. Εάν όλες οι όψεις μιας πυραμίδας έχουν την ίδια κλίση προς το επίπεδο της βάσης, τότε η κορυφή της πυραμίδας προβάλλεται στο κέντρο ενός κύκλου που είναι εγγεγραμμένος στη βάση.

Για να υπολογίσετε τον όγκο μιας αυθαίρετης πυραμίδας, ο σωστός τύπος είναι:

Οπου V- Ενταση ΗΧΟΥ;

Βάση S– περιοχή βάσης·

H– ύψος της πυραμίδας.

Για μια κανονική πυραμίδα, οι ακόλουθοι τύποι είναι σωστοί:

Οπου Π– περίμετρος βάσης.

η α– αποθέμα·

H- ύψος;

S γεμάτο

S πλευρά

Βάση S– περιοχή βάσης·

V– όγκος κανονικής πυραμίδας.

Κόλουρη πυραμίδαονομάζεται το τμήμα της πυραμίδας που περικλείεται μεταξύ της βάσης και ενός επιπέδου κοπής παράλληλο στη βάση της πυραμίδας (Εικ. 17). Κανονική κολοβωμένη πυραμίδα ονομάζεται το τμήμα μιας κανονικής πυραμίδας που περικλείεται μεταξύ της βάσης και ενός επιπέδου κοπής παράλληλο στη βάση της πυραμίδας.

Λόγοικολοβωμένη πυραμίδα - παρόμοια πολύγωνα. Πλαϊνά πρόσωπα – τραπεζοειδή. Υψος μιας κολοβωμένης πυραμίδας είναι η απόσταση μεταξύ των βάσεων της. Διαγώνιος μια κολοβωμένη πυραμίδα είναι ένα τμήμα που συνδέει τις κορυφές της που δεν βρίσκονται στην ίδια όψη. Διαγώνιο τμήμα είναι ένα τμήμα μιας κόλουρης πυραμίδας από ένα επίπεδο που διέρχεται από δύο πλευρικές ακμές που δεν ανήκουν στην ίδια όψη.


Για μια κολοβωμένη πυραμίδα ισχύουν οι ακόλουθοι τύποι:

(4)

Οπου μικρό 1 , μικρό 2 – περιοχές των άνω και κάτω βάσεων.

S γεμάτο– συνολική επιφάνεια·

S πλευρά– πλευρική επιφάνεια·

H- ύψος;

V– όγκος κολοβωμένης πυραμίδας.

Για μια κανονική κολοβωμένη πυραμίδα ο τύπος είναι σωστός:

Οπου Π 1 , Π 2 – περίμετροι βάσεων.

η α– απόθεμα κανονικής κολοβωμένης πυραμίδας.

Παράδειγμα 1.Σε μια κανονική τριγωνική πυραμίδα, η διεδρική γωνία στη βάση είναι 60º. Να βρείτε την εφαπτομένη της γωνίας κλίσης της πλευρικής ακμής στο επίπεδο της βάσης.

Λύση.Ας κάνουμε ένα σχέδιο (Εικ. 18).


Η πυραμίδα είναι κανονική, που σημαίνει ότι στη βάση υπάρχει ένα ισόπλευρο τρίγωνο και όλες οι πλευρικές όψεις είναι ίσα ισοσκελές τρίγωνα. Η διεδρική γωνία στη βάση είναι η γωνία κλίσης της πλευρικής όψης της πυραμίδας προς το επίπεδο της βάσης. Η γραμμική γωνία είναι η γωνία έναμεταξύ δύο καθέτων: κ.λπ. Η κορυφή της πυραμίδας προβάλλεται στο κέντρο του τριγώνου (το κέντρο του κυκλικού κύκλου και ο εγγεγραμμένος κύκλος του τριγώνου αλφάβητο). Η γωνία κλίσης του πλευρικού άκρου (για παράδειγμα S.B.) είναι η γωνία μεταξύ της ίδιας της ακμής και της προβολής της στο επίπεδο της βάσης. Για το πλευρό S.B.αυτή η γωνία θα είναι η γωνία SBD. Για να βρείτε την εφαπτομένη πρέπει να γνωρίζετε τα πόδια ΕΤΣΙΚαι Ο.Β.. Αφήστε το μήκος του τμήματος BDισούται με 3 ΕΝΑ. Τελεία ΣΧΕΤΙΚΑ ΜΕευθύγραμμο τμήμα BDχωρίζεται σε μέρη: και Από βρίσκουμε ΕΤΣΙ: Από βρίσκουμε:

Απάντηση:

Παράδειγμα 2.Βρείτε τον όγκο μιας κανονικής κόλουρης τετραγωνικής πυραμίδας αν οι διαγώνιοι των βάσεων της είναι ίσες με cm και cm και το ύψος της είναι 4 cm.

Λύση.Για να βρούμε τον όγκο μιας κολοβωμένης πυραμίδας, χρησιμοποιούμε τον τύπο (4). Για να βρείτε το εμβαδόν των βάσεων, πρέπει να βρείτε τις πλευρές των τετραγώνων της βάσης, γνωρίζοντας τις διαγώνιες τους. Οι πλευρές των βάσεων είναι ίσες με 2 cm και 8 cm, αντίστοιχα. Αυτό σημαίνει ότι οι περιοχές των βάσεων και Αντικαθιστώντας όλα τα δεδομένα στον τύπο, υπολογίζουμε τον όγκο της κολοβωμένης πυραμίδας:

Απάντηση: 112 cm 3.

Παράδειγμα 3.Βρείτε την περιοχή της πλευρικής όψης μιας κανονικής τριγωνικής κολοβωμένης πυραμίδας, οι πλευρές των βάσεων της οποίας είναι 10 cm και 4 cm και το ύψος της πυραμίδας είναι 2 cm.

Λύση.Ας κάνουμε ένα σχέδιο (Εικ. 19).


Η πλευρική όψη αυτής της πυραμίδας είναι ένα ισοσκελές τραπεζοειδές. Για να υπολογίσετε την περιοχή ενός τραπεζοειδούς, πρέπει να γνωρίζετε τη βάση και το ύψος. Οι βάσεις δίνονται ανάλογα με την συνθήκη, μόνο το ύψος παραμένει άγνωστο. Θα τη βρούμε από που ΕΝΑ 1 μικάθετη από ένα σημείο ΕΝΑ 1 στο επίπεδο της κάτω βάσης, ΕΝΑ 1 ρε– κάθετη από ΕΝΑ 1 ανά ΜΕΤΑ ΧΡΙΣΤΟΝ. ΕΝΑ 1 μι= 2 cm, αφού αυτό είναι το ύψος της πυραμίδας. Να βρω DEΑς κάνουμε ένα επιπλέον σχέδιο που δείχνει την επάνω όψη (Εικ. 20). Τελεία ΣΧΕΤΙΚΑ ΜΕ– προβολή των κέντρων της άνω και κάτω βάσης. αφού (βλ. Εικ. 20) και Από την άλλη Εντάξει– ακτίνα εγγεγραμμένη στον κύκλο και ΟΜ– ακτίνα εγγεγραμμένη σε κύκλο:

ΜΚ = ΔΕ.

Σύμφωνα με το Πυθαγόρειο θεώρημα από

Πλαϊνή περιοχή προσώπου:


Απάντηση:

Παράδειγμα 4.Στη βάση της πυραμίδας βρίσκεται ένα ισοσκελές τραπεζοειδές, οι βάσεις του οποίου ΕΝΑΚαι σι (ένα> σι). Κάθε πλευρική όψη σχηματίζει γωνία ίση με το επίπεδο της βάσης της πυραμίδας ι. Βρείτε τη συνολική επιφάνεια της πυραμίδας.

Λύση.Ας κάνουμε ένα σχέδιο (Εικ. 21). Συνολική επιφάνεια της πυραμίδας SABCDίσο με το άθροισμα των εμβαδών και του εμβαδού του τραπεζοειδούς Α Β Γ Δ.

Ας χρησιμοποιήσουμε τη δήλωση ότι εάν όλες οι όψεις της πυραμίδας είναι εξίσου κεκλιμένες προς το επίπεδο της βάσης, τότε η κορυφή προβάλλεται στο κέντρο του κύκλου που είναι εγγεγραμμένος στη βάση. Τελεία ΣΧΕΤΙΚΑ ΜΕ– προβολή κορυφής μικρόστη βάση της πυραμίδας. Τρίγωνο ΧΛΟΟΤΑΠΗΤΑΣείναι η ορθογώνια προβολή του τριγώνου CSDστο επίπεδο της βάσης. Χρησιμοποιώντας το θεώρημα για την περιοχή της ορθογώνιας προβολής ενός επίπεδου σχήματος, παίρνουμε:


Το ίδιο σημαίνει Έτσι, το πρόβλημα περιορίστηκε στην εύρεση της περιοχής του τραπεζοειδούς Α Β Γ Δ. Ας σχεδιάσουμε ένα τραπεζοειδές Α Β Γ Δχωριστά (Εικ. 22). Τελεία ΣΧΕΤΙΚΑ ΜΕ– το κέντρο ενός κύκλου εγγεγραμμένο σε τραπεζοειδές.


Εφόσον ένας κύκλος μπορεί να εγγραφεί σε ένα τραπέζιο, τότε ή Από το Πυθαγόρειο θεώρημα έχουμε

Ορισμός

Πυραμίδαείναι ένα πολύεδρο που αποτελείται από ένα πολύγωνο \(A_1A_2...A_n\) και \(n\) τρίγωνα με κοινή κορυφή \(P\) (δεν βρίσκεται στο επίπεδο του πολυγώνου) και πλευρές απέναντι από αυτό, που συμπίπτουν με την πλευρές του πολυγώνου.
Ονομασία: \(PA_1A_2...A_n\) .
Παράδειγμα: πενταγωνική πυραμίδα \(PA_1A_2A_3A_4A_5\) .

Τρίγωνα \(PA_1A_2, \PA_2A_3\), κ.λπ. λέγονται πλαϊνά πρόσωπαπυραμίδες, τμήματα \(PA_1, PA_2\) κ.λπ. – πλευρικές νευρώσεις, πολύγωνο \(A_1A_2A_3A_4A_5\) – βάση, σημείο \(P\) – μπλουζα.

ΥψοςΟι πυραμίδες είναι μια κάθετη που κατεβαίνει από την κορυφή της πυραμίδας στο επίπεδο της βάσης.

Μια πυραμίδα με ένα τρίγωνο στη βάση της ονομάζεται τετράεδρο.

Η πυραμίδα ονομάζεται σωστός, εάν η βάση του είναι κανονικό πολύγωνο και πληρούται μία από τις ακόλουθες προϋποθέσεις:

\((α)\) οι πλευρικές άκρες της πυραμίδας είναι ίσες.

\((β)\) το ύψος της πυραμίδας διέρχεται από το κέντρο του κύκλου που περιβάλλεται κοντά στη βάση.

\((γ)\) οι πλευρικές νευρώσεις έχουν κλίση προς το επίπεδο της βάσης στην ίδια γωνία.

\((δ)\) οι πλευρικές όψεις είναι κεκλιμένες προς το επίπεδο της βάσης στην ίδια γωνία.

Κανονικό τετράεδροείναι μια τριγωνική πυραμίδα, της οποίας όλες οι όψεις είναι ίσα ισόπλευρα τρίγωνα.

Θεώρημα

Οι συνθήκες \((α), (β), (γ), (δ)\) είναι ισοδύναμες.

Απόδειξη

Ας βρούμε το ύψος της πυραμίδας \(PH\) . Έστω \(\άλφα\) το επίπεδο της βάσης της πυραμίδας.


1) Ας αποδείξουμε ότι το \((a)\) υποδηλώνει \((b)\) . Έστω \(PA_1=PA_2=PA_3=...=PA_n\) .

Επειδή \(PH\perp \alpha\), τότε το \(PH\) είναι κάθετο σε οποιαδήποτε ευθεία βρίσκεται σε αυτό το επίπεδο, πράγμα που σημαίνει ότι τα τρίγωνα είναι ορθογώνια. Αυτό σημαίνει ότι αυτά τα τρίγωνα είναι ίσα στο κοινό σκέλος \(PH\) και στην υποτείνουσα \(PA_1=PA_2=PA_3=...=PA_n\) . Άρα, \(A_1H=A_2H=...=A_nH\) . Αυτό σημαίνει ότι τα σημεία \(A_1, A_2, ..., A_n\) βρίσκονται στην ίδια απόσταση από το σημείο \(H\), επομένως, βρίσκονται στον ίδιο κύκλο με την ακτίνα \(A_1H\) . Αυτός ο κύκλος, εξ ορισμού, περιγράφεται στο πολύγωνο \(A_1A_2...A_n\) .

2) Ας αποδείξουμε ότι το \((b)\) υποδηλώνει \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\)ορθογώνιο και ίσο σε δύο πόδια. Αυτό σημαίνει ότι οι γωνίες τους είναι επίσης ίσες, επομένως, \(\γωνία PA_1H=\γωνία PA_2H=...=\γωνία PA_nH\).

3) Ας αποδείξουμε ότι το \((c)\) υποδηλώνει \((a)\) .

Παρόμοια με το πρώτο σημείο, τρίγωνα \(PA_1H, PA_2H, PA_3H,..., PA_nH\)ορθογώνια τόσο κατά μήκος του ποδιού όσο και οξεία γωνία. Αυτό σημαίνει ότι και οι υποτείνυσές τους είναι ίσες, δηλαδή \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Ας αποδείξουμε ότι από το \((b)\) προκύπτει \((d)\) .

Επειδή Σε ένα κανονικό πολύγωνο τα κέντρα των περιγεγραμμένων και εγγεγραμμένων κύκλων συμπίπτουν (γενικά μιλώντας, αυτό το σημείο ονομάζεται κέντρο ενός κανονικού πολυγώνου), τότε το \(H\) είναι το κέντρο του εγγεγραμμένου κύκλου. Ας σχεδιάσουμε κάθετες από το σημείο \(H\) στις πλευρές της βάσης: \(HK_1, HK_2\), κ.λπ. Αυτές είναι οι ακτίνες του εγγεγραμμένου κύκλου (εξ ορισμού). Στη συνέχεια, σύμφωνα με το TTP (το \(PH\) είναι κάθετο στο επίπεδο, \(HK_1, HK_2\), κ.λπ. είναι προεξοχές κάθετες στις πλευρές) με κλίση \(PK_1, PK_2\), κ.λπ. κάθετες στις πλευρές \(A_1A_2, A_2A_3\), κ.λπ. αντίστοιχα. Έτσι, εξ ορισμού \(\γωνία PK_1H, \γωνία PK_2H\)ίσες με τις γωνίες μεταξύ των πλευρικών όψεων και της βάσης. Επειδή τα τρίγωνα \(PK_1H, PK_2H, ...\) είναι ίσα (ως ορθογώνια σε δύο πλευρές), τότε οι γωνίες \(\γωνία PK_1H, \γωνία PK_2H, ...\)είναι ίσα.

5) Ας αποδείξουμε ότι το \((d)\) υποδηλώνει \((b)\) .

Παρόμοια με το τέταρτο σημείο, τα τρίγωνα \(PK_1H, PK_2H, ...\) είναι ίσα (ως ορθογώνια κατά μήκος του σκέλους και οξεία γωνία), που σημαίνει ότι τα τμήματα \(HK_1=HK_2=...=HK_n\) είναι ίσος. Αυτό σημαίνει, εξ ορισμού, το \(H\) είναι το κέντρο ενός κύκλου που είναι εγγεγραμμένο στη βάση. Αλλά επειδή Για κανονικά πολύγωνα, τα κέντρα των εγγεγραμμένων και περιγεγραμμένων κύκλων συμπίπτουν, τότε το \(H\) είναι το κέντρο του περιγεγραμμένου κύκλου. Chtd.

Συνέπεια

Οι πλευρικές όψεις μιας κανονικής πυραμίδας είναι ίσα ισοσκελές τρίγωνα.

Ορισμός

Το ύψος της πλευρικής όψης μιας κανονικής πυραμίδας που αντλείται από την κορυφή της ονομάζεται αποθεμα.
Τα αποθέματα όλων των πλευρικών όψεων μιας κανονικής πυραμίδας είναι ίσα μεταξύ τους και είναι επίσης διάμεσοι και διχοτόμοι.

Σημαντικές σημειώσεις

1. Το ύψος μιας κανονικής τριγωνικής πυραμίδας πέφτει στο σημείο τομής των υψών (ή διχοτόμων, ή διαμέσου) της βάσης (η βάση είναι κανονικό τρίγωνο).

2. Το ύψος μιας κανονικής τετραγωνικής πυραμίδας πέφτει στο σημείο τομής των διαγωνίων της βάσης (η βάση είναι τετράγωνο).

3. Το ύψος μιας κανονικής εξαγωνικής πυραμίδας πέφτει στο σημείο τομής των διαγωνίων της βάσης (η βάση είναι κανονικό εξάγωνο).

4. Το ύψος της πυραμίδας είναι κάθετο σε κάθε ευθεία που βρίσκεται στη βάση.

Ορισμός

Η πυραμίδα ονομάζεται ορθογώνιος, αν ένα από τα πλευρικά άκρα του είναι κάθετο στο επίπεδο της βάσης.


Σημαντικές σημειώσεις

1. Σε μια ορθογώνια πυραμίδα, η άκρη κάθετη στη βάση είναι το ύψος της πυραμίδας. Δηλαδή, \(SR\) είναι το ύψος.

2. Επειδή Το \(SR\) είναι κάθετο σε οποιαδήποτε γραμμή από τη βάση, λοιπόν \(\triangle SRM, \triangle SRP\)– ορθογώνια τρίγωνα.

3. Τρίγωνα \(\τρίγωνο SRN, \τρίγωνο SRK\)- επίσης ορθογώνιο.
Δηλαδή, κάθε τρίγωνο που σχηματίζεται από αυτή την άκρη και η διαγώνιος που αναδύεται από την κορυφή αυτής της ακμής που βρίσκεται στη βάση θα είναι ορθογώνιο.

\[(\Large(\text(Όγκος και επιφάνεια της πυραμίδας)))\]

Θεώρημα

Ο όγκος της πυραμίδας είναι ίσος με το ένα τρίτο του γινομένου του εμβαδού της βάσης και του ύψους της πυραμίδας: \

Συνέπειες

Έστω \(a\) η πλευρά της βάσης, \(h\) το ύψος της πυραμίδας.

1. Ο όγκος μιας κανονικής τριγωνικής πυραμίδας είναι \(V_(\text(δεξιό τρίγωνο.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. Ο όγκος μιας κανονικής τετραγωνικής πυραμίδας είναι \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. Ο όγκος μιας κανονικής εξαγωνικής πυραμίδας είναι \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. Ο όγκος ενός κανονικού τετραέδρου είναι \(V_(\text(δεξιά tetr.))=\dfrac(\sqrt3)(12)a^3\).

Θεώρημα

Το εμβαδόν της πλευρικής επιφάνειας μιας κανονικής πυραμίδας είναι ίσο με το μισό γινόμενο της περιμέτρου της βάσης και του αποθέματος.

\[(\Large(\text(Frustum)))\]

Ορισμός

Σκεφτείτε μια αυθαίρετη πυραμίδα \(PA_1A_2A_3...A_n\) . Ας ανατρέξουμε σε κάποιο σημείο ξαπλώνοντας πλευρική πλευράπυραμίδα, το επίπεδο είναι παράλληλο με τη βάση της πυραμίδας. Αυτό το επίπεδο θα χωρίσει την πυραμίδα σε δύο πολύεδρα, το ένα από τα οποία είναι πυραμίδα (\(PB_1B_2...B_n\)) και το άλλο ονομάζεται κολοβωμένη πυραμίδα(\(A_1A_2...A_nB_1B_2...B_n\) ).


Η κολοβωμένη πυραμίδα έχει δύο βάσεις - πολύγωνα \(A_1A_2...A_n\) και \(B_1B_2...B_n\) που είναι παρόμοια μεταξύ τους.

Το ύψος μιας κόλουρης πυραμίδας είναι μια κάθετη που τραβιέται από κάποιο σημείο της άνω βάσης στο επίπεδο της κάτω βάσης.

Σημαντικές σημειώσεις

1. Όλες οι πλευρικές όψεις μιας κολοβωμένης πυραμίδας είναι τραπεζοειδή.

2. Το τμήμα που συνδέει τα κέντρα των βάσεων μιας κανονικής κόλουρης πυραμίδας (δηλαδή μιας πυραμίδας που προκύπτει από διατομή μιας κανονικής πυραμίδας) είναι το ύψος.



Έχετε ερωτήσεις;

Αναφέρετε ένα τυπογραφικό λάθος

Κείμενο που θα σταλεί στους συντάκτες μας: